Gemini API를 사용하여 동영상 파일 분석

Gemini 모델에 인라인 (base64 인코딩) 또는 URL을 통해 제공한 동영상 파일을 분석하도록 요청할 수 있습니다. Firebase AI Logic를 사용하면 앱에서 직접 이 요청을 할 수 있습니다.

이 기능을 사용하면 다음과 같은 작업을 할 수 있습니다.

  • 동영상에 캡션을 추가하고 질문에 답변하기
  • 타임스탬프를 사용하여 동영상의 특정 구간 분석
  • 오디오 트랙과 시각적 프레임을 모두 처리하여 동영상 콘텐츠 스크립트 작성
  • 오디오 트랙과 시각적 프레임을 모두 포함하여 동영상에서 정보를 설명, 세분화, 추출

코드 샘플로 이동 스트리밍된 응답 코드로 이동


동영상 작업을 위한 추가 옵션은 다른 가이드에서 확인하세요
정형 출력 생성 다중 대화 채팅

시작하기 전에

Gemini API 제공업체를 클릭하여 이 페이지에서 제공업체별 콘텐츠와 코드를 확인합니다.

아직 완료하지 않았다면 Firebase 프로젝트를 설정하고, 앱을 Firebase에 연결하고, SDK를 추가하고, 선택한 Gemini API 제공업체의 백엔드 서비스를 초기화하고, GenerativeModel 인스턴스를 만드는 방법을 설명하는 시작 가이드를 완료하세요.

프롬프트를 테스트하고 반복하며 생성된 코드 스니펫을 가져오려면 Google AI Studio를 사용하는 것이 좋습니다.

동영상 파일에서 텍스트 생성 (base64 인코딩)

이 샘플을 사용해 보기 전에 이 가이드의 시작하기 전에 섹션을 완료하여 프로젝트와 앱을 설정하세요.
이 섹션에서 선택한 Gemini API 제공업체의 버튼을 클릭하면 이 페이지에 제공업체별 콘텐츠가 표시됩니다.

텍스트와 동영상으로 프롬프트하여 Gemini 모델에 텍스트를 생성해 달라고 요청할 수 있습니다. 각 입력 파일의 mimeType와 파일 자체를 제공합니다. 이 페이지의 뒷부분에서 입력 파일의 요구사항 및 권장사항을 확인하세요.

이 예에서는 파일을 인라인으로 제공하는 방법을 보여줍니다. 하지만 SDK는 YouTube URL 제공도 지원합니다.

Swift

generateContent()를 호출하여 텍스트 및 동영상 파일의 멀티모달 입력에서 텍스트를 생성할 수 있습니다.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")

// Provide a text prompt to include with the video
let prompt = "What is in the video?"

// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")

Kotlin

generateContent()를 호출하여 텍스트 및 동영상 파일의 멀티모달 입력에서 텍스트를 생성할 수 있습니다.

Kotlin의 경우 이 SDK의 메서드는 정지 함수이므로 코루틴 범위에서 호출해야 합니다.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    // Provide a prompt that includes the video specified above and text
    val prompt = content {
        inlineData(bytes, "video/mp4")
        text("What is in the video?")
    }

    // To generate text output, call generateContent with the prompt
    val response = generativeModel.generateContent(prompt)
    Log.d(TAG, response.text ?: "")
  }
}

Java

generateContent()를 호출하여 텍스트 및 동영상 파일의 멀티모달 입력에서 텍스트를 생성할 수 있습니다.

Java의 경우 이 SDK의 메서드는 ListenableFuture를 반환합니다.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes the video specified above and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("What is in the video?")
                .build();

        // To generate text output, call generateContent with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        }, executor);
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

Web

generateContent()를 호출하여 텍스트 및 동영상 파일의 멀티모달 입력에서 텍스트를 생성할 수 있습니다.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the video
  const prompt = "What do you see?";

  const fileInputEl = document.querySelector("input[type=file]");
  const videoPart = await fileToGenerativePart(fileInputEl.files[0]);

  // To generate text output, call generateContent with the text and video
  const result = await model.generateContent([prompt, videoPart]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

generateContent()를 호출하여 텍스트 및 동영상 파일의 멀티모달 입력에서 텍스트를 생성할 수 있습니다.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");

// Prepare video for input
final video = await File('video0.mp4').readAsBytes();

// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);

// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
  Content.multi([prompt, ...videoPart])
]);
print(response.text);

Unity

GenerateContentAsync()를 호출하여 텍스트 및 동영상 파일의 멀티모달 입력에서 텍스트를 생성할 수 있습니다.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
          UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));

// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");

// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

사용 사례 및 앱에 적합한 모델을 선택하는 방법을 알아보세요.

대답 스트리밍

이 샘플을 사용해 보기 전에 이 가이드의 시작하기 전에 섹션을 완료하여 프로젝트와 앱을 설정하세요.
이 섹션에서 선택한 Gemini API 제공업체의 버튼을 클릭하면 이 페이지에 제공업체별 콘텐츠가 표시됩니다.

모델 생성의 전체 결과를 기다리지 않고 대신 스트리밍을 사용하여 부분 결과를 처리하면 더 빠른 상호작용을 얻을 수 있습니다. 응답을 스트리밍하려면 generateContentStream를 호출합니다.



입력 동영상 파일 요구사항 및 권장사항

인라인 데이터로 제공된 파일은 전송 중에 base64로 인코딩되므로 요청 크기가 커집니다. 요청이 너무 크면 HTTP 413 오류가 발생합니다.

다음에 관한 자세한 내용은 '지원되는 입력 파일 및 Vertex AI Gemini API 요구사항'을 참고하세요.

지원되는 동영상 MIME 유형

Gemini 멀티모달 모델은 다음과 같은 동영상 MIME 유형을 지원합니다.

동영상 MIME 유형 Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
FLV - video/x-flv
MOV - video/quicktime
MPEG - video/mpeg
MPEGPS - video/mpegps
MPG - video/mpg
MP4 - video/mp4
WEBM - video/webm
WMV - video/wmv
3GPP - video/3gpp

요청당 한도

프롬프트 요청에 허용되는 최대 동영상 파일 수는 다음과 같습니다.

  • Gemini 2.0 FlashGemini 2.0 Flash‑Lite: 동영상 파일 10개



또 뭘 할 수 있니?

  • 모델에 긴 프롬프트를 보내기 전에 토큰 수를 집계하는 방법을 알아보세요.
  • Cloud Storage for Firebase를 설정하여 다중 모드 요청에 대용량 파일을 포함하고 프롬프트에서 파일을 제공하는 더 관리된 솔루션을 사용할 수 있습니다. 파일에는 이미지, PDF, 동영상, 오디오가 포함될 수 있습니다.
  • 다음을 포함하여 프로덕션 준비 (프로덕션 체크리스트 참고)에 대해 생각해 보세요.

다른 기능 사용해 보기

콘텐츠 생성을 제어하는 방법 알아보기

프롬프트와 모델 구성을 실험하고 Google AI Studio를 사용하여 생성된 코드 스니펫을 가져올 수도 있습니다.

지원되는 모델 자세히 알아보기

다양한 사용 사례에 사용할 수 있는 모델할당량, 가격에 대해 알아보세요.


Firebase AI Logic 사용 경험에 관한 의견 보내기