您可以要求 Gemini 模型分析您提供的內嵌 (Base64 編碼) 或透過網址提供的音訊檔案。使用 Firebase AI Logic 時,您可以直接透過應用程式提出這項要求。
這項功能可讓您執行下列操作:
- 說明、摘要或解答音訊內容相關問題
- 轉錄音訊內容
- 使用時間戳記分析音訊的特定片段
參閱其他指南,瞭解如何使用音訊的其他選項 產生結構化輸出內容 多回合聊天 雙向串流 |
事前準備
按一下您的 Gemini API 供應商,即可在本頁查看供應商專屬內容和程式碼。 |
如果您尚未完成,請參閱入門指南,瞭解如何設定 Firebase 專案、將應用程式連結至 Firebase、新增 SDK、為所選 Gemini API 供應器初始化後端服務,以及建立 GenerativeModel
例項。
如要測試並重複提示,甚至取得產生的程式碼片段,建議您使用 Google AI Studio。
從音訊檔案 (base64 編碼) 產生文字
在嘗試這個範例前,請先完成本指南的「開始前」一節,設定專案和應用程式。 在該部分,您也需要點選所選Gemini API供應商的按鈕,才能在本頁面上看到供應商專屬內容。 |
您可以要求 Gemini 模型透過文字和音訊提示來產生文字,方法是提供輸入檔案的 mimeType
和檔案本身。請參閱本頁後續的輸入檔案相關規定和建議。
Swift
您可以呼叫 generateContent()
,根據多模態輸入的文字和單一音訊檔案產生文字。
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the audio as `Data`
guard let audioData = try? Data(contentsOf: audioURL) else {
print("Error loading audio data.")
return // Or handle the error appropriately
}
// Specify the appropriate audio MIME type
let audio = InlineDataPart(data: audioData, mimeType: "audio/mpeg")
// Provide a text prompt to include with the audio
let prompt = "Transcribe what's said in this audio recording."
// To generate text output, call `generateContent` with the audio and text prompt
let response = try await model.generateContent(audio, prompt)
// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")
Kotlin
您可以呼叫 generateContent()
,根據多模態輸入的文字和單一音訊檔案產生文字。
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
val inputStream = contentResolver.openInputStream(audioUri)
if (inputStream != null) { // Check if the audio loaded successfully
inputStream.use { stream ->
val bytes = stream.readBytes()
// Provide a prompt that includes the audio specified above and text
val prompt = content {
inlineData(bytes, "audio/mpeg") // Specify the appropriate audio MIME type
text("Transcribe what's said in this audio recording.")
}
// To generate text output, call `generateContent` with the prompt
val response = generativeModel.generateContent(prompt)
// Log the generated text, handling the case where it might be null
Log.d(TAG, response.text?: "")
}
} else {
Log.e(TAG, "Error getting input stream for audio.")
// Handle the error appropriately
}
Java
您可以呼叫 generateContent()
,根據多模態輸入的文字和單一音訊檔案產生文字。
ListenableFuture
。
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(audioUri)) {
File audioFile = new File(new URI(audioUri.toString()));
int audioSize = (int) audioFile.length();
byte audioBytes = new byte[audioSize];
if (stream != null) {
stream.read(audioBytes, 0, audioBytes.length);
stream.close();
// Provide a prompt that includes the audio specified above and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "audio/mpeg") // Specify the appropriate audio MIME type
.addText("Transcribe what's said in this audio recording.")
.build();
// To generate text output, call `generateContent` with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String text = result.getText();
Log.d(TAG, (text == null) ? "" : text);
}
@Override
public void onFailure(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
}, executor);
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid audio file", e);
}
Web
您可以呼叫 generateContent()
,根據多模態輸入的文字和單一音訊檔案產生文字。
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(','));
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the audio
const prompt = "Transcribe what's said in this audio recording.";
// Prepare audio for input
const fileInputEl = document.querySelector("input[type=file]");
const audioPart = await fileToGenerativePart(fileInputEl.files);
// To generate text output, call `generateContent` with the text and audio
const result = await model.generateContent([prompt, audioPart]);
// Log the generated text, handling the case where it might be undefined
console.log(result.response.text() ?? "No text in response.");
}
run();
Dart
您可以呼叫 generateContent()
,根據多模態輸入的文字和單一音訊檔案生成文字。
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the audio
final prompt = TextPart("Transcribe what's said in this audio recording.");
// Prepare audio for input
final audio = await File('audio0.mp3').readAsBytes();
// Provide the audio as `Data` with the appropriate audio MIME type
final audioPart = InlineDataPart('audio/mpeg', audio);
// To generate text output, call `generateContent` with the text and audio
final response = await model.generateContent([
Content.multi([prompt,audioPart])
]);
// Print the generated text
print(response.text);
Unity
您可以呼叫 GenerateContentAsync()
,根據多模態輸入的文字和單一音訊檔案產生文字。
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a text prompt to include with the audio
var prompt = ModelContent.Text("Transcribe what's said in this audio recording.");
// Provide the audio as `data` with the appropriate audio MIME type
var audio = ModelContent.InlineData("audio/mpeg",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "audio0.mp3")));
// To generate text output, call `GenerateContentAsync` with the text and audio
var response = await model.GenerateContentAsync(new [] { prompt, audio });
// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
瞭解如何選擇適合用途和應用程式的模型。
逐句顯示回應
在嘗試這個範例前,請先完成本指南的「開始前」一節,設定專案和應用程式。 在該部分,您也需要點選所選Gemini API供應商的按鈕,才能在本頁面上看到供應商專屬內容。 |
您可以不等待模型產生的完整結果,改用串流處理部分結果,以便加快互動速度。如要串流回應,請呼叫 generateContentStream
。
輸入音訊檔案的規定和建議
請注意,以內嵌資料形式提供的檔案會在傳輸過程中編碼為 base64,因此會增加要求的大小。如果要求過大,您會收到 HTTP 413 錯誤。
請參閱「支援的 Vertex AI Gemini API 輸入檔案和相關規定」一文,瞭解下列項目的詳細資訊:
- 在要求中提供檔案的不同選項 (內嵌或使用檔案的網址或 URI)
- 音訊檔案的相關規定和最佳做法
支援的音訊 MIME 類型
Gemini 多模態模型支援下列音訊 MIME 類型:
音訊 MIME 類型 | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
AAC - audio/aac |
||
FLAC - audio/flac |
||
MP3 - audio/mp3 |
||
MPA - audio/m4a |
||
MPEG - audio/mpeg |
||
MPGA - audio/mpga |
||
MP4 - audio/mp4 |
||
OPUS - audio/opus |
||
PCM - audio/pcm |
||
WAV - audio/wav |
||
WEBM - audio/webm |
每項要求的限制
您最多可以在提示要求中加入
你還可以做些什麼?
- 瞭解如何計算符號,再將長提示傳送至模型。
- 設定 Cloud Storage for Firebase,這樣您就能在多模態要求中加入大型檔案,並透過更妥善的解決方案在提示中提供檔案。檔案可包含圖片、PDF、影片和音訊。
-
開始著手準備正式版 (請參閱正式版檢查清單),包括:
- 設定 Firebase App Check,以免 Gemini API 遭到未經授權的用戶端濫用。
- 整合 Firebase Remote Config,無須發布新版應用程式,即可更新應用程式中的值 (例如型號名稱)。
試用其他功能
- 建構多輪對話 (聊天)。
- 使用文字提示來生成文字。
- 從文字和多模態提示產生結構化輸出內容 (例如 JSON)。
- 使用文字提示生成圖片。
- 使用函式呼叫,將生成模型連結至外部系統和資訊。
瞭解如何控管內容產生作業
- 瞭解提示設計,包括最佳做法、策略和提示範例。
- 設定模型參數,例如溫度參數和輸出符記數量上限 (適用於 Gemini),或顯示比例和人物生成 (適用於 Imagen)。
- 使用安全性設定,調整可能會收到有害回應的機率。
進一步瞭解支援的型號
瞭解可用於各種用途的模型,以及相關配額和價格。針對使用 Firebase AI Logic 的體驗提供意見回饋