Analyze documents (like PDFs) using the Gemini API

You can ask a Gemini model to analyze document files (like PDFs and plain-text files) that you provide either inline (base64-encoded) or via URL. When you use Firebase AI Logic, you can make this request directly from your app.

With this capability, you can do things like:

  • Analyze diagrams, charts, and tables inside documents
  • Extract information into structured output formats
  • Answer questions about visual and text contents in documents
  • Summarize documents
  • Transcribe document content (for example, into HTML), preserving layouts and formatting, for use in downstream applications (such as in RAG pipelines)

Jump to code samples Jump to code for streamed responses


See other guides for additional options for working with documents (like PDFs)
Generate structured output Multi-turn chat

Before you begin

Click your Gemini API provider to view provider-specific content and code on this page.

If you haven't already, complete the getting started guide, which describes how to set up your Firebase project, connect your app to Firebase, add the SDK, initialize the backend service for your chosen Gemini API provider, and create a GenerativeModel instance.

For testing and iterating on your prompts and even getting a generated code snippet, we recommend using Google AI Studio.

Generate text from PDF files (base64-encoded)

Before trying this sample, complete the Before you begin section of this guide to set up your project and app.
In that section, you'll also click a button for your chosen Gemini API provider so that you see provider-specific content on this page.

You can ask a Gemini model to generate text by prompting with text and PDFs—providing each input file's mimeType and the file itself. Find requirements and recommendations for input files later on this page.

Swift

You can call generateContent() to generate text from multimodal input of text and PDFs.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the PDF as `Data` with the appropriate MIME type
let pdf = try InlineDataPart(data: Data(contentsOf: pdfURL), mimeType: "application/pdf")

// Provide a text prompt to include with the PDF file
let prompt = "Summarize the important results in this report."

// To generate text output, call `generateContent` with the PDF file and text prompt
let response = try await model.generateContent(pdf, prompt)

// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")

Kotlin

You can call generateContent() to generate text from multimodal input of text and PDFs.

For Kotlin, the methods in this SDK are suspend functions and need to be called from a Coroutine scope.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver

// Provide the URI for the PDF file you want to send to the model
val inputStream = contentResolver.openInputStream(pdfUri)

if (inputStream != null) {  // Check if the PDF file loaded successfully
    inputStream.use { stream ->
        // Provide a prompt that includes the PDF file specified above and text
        val prompt = content {
            inlineData(
                bytes = stream.readBytes(),
                mimeType = "application/pdf" // Specify the appropriate PDF file MIME type
            )
            text("Summarize the important results in this report.")
        }

        // To generate text output, call `generateContent` with the prompt
        val response = generativeModel.generateContent(prompt)

        // Log the generated text, handling the case where it might be null
        Log.d(TAG, response.text ?: "")
    }
} else {
    Log.e(TAG, "Error getting input stream for file.")
    // Handle the error appropriately
}

Java

You can call generateContent() to generate text from multimodal input of text and PDFs.

For Java, the methods in this SDK return a ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();

// Provide the URI for the PDF file you want to send to the model
try (InputStream stream = resolver.openInputStream(pdfUri)) {
    if (stream != null) {
        byte[] audioBytes = stream.readAllBytes();
        stream.close();

        // Provide a prompt that includes the PDF file specified above and text
        Content prompt = new Content.Builder()
              .addInlineData(audioBytes, "application/pdf")  // Specify the appropriate PDF file MIME type
              .addText("Summarize the important results in this report.")
              .build();

        // To generate text output, call `generateContent` with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String text = result.getText();
                Log.d(TAG, (text == null) ? "" : text);
            }
            @Override
            public void onFailure(Throwable t) {
                Log.e(TAG, "Failed to generate a response", t);
            }
        }, executor);
    } else {
        Log.e(TAG, "Error getting input stream for file.");
        // Handle the error appropriately
    }
} catch (IOException e) {
    Log.e(TAG, "Failed to read the pdf file", e);
} catch (URISyntaxException e) {
    Log.e(TAG, "Invalid pdf file", e);
}

Web

You can call generateContent() to generate text from multimodal input of text and PDFs.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(','));
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the PDF file
  const prompt = "Summarize the important results in this report.";

  // Prepare PDF file for input
  const fileInputEl = document.querySelector("input[type=file]");
  const pdfPart = await fileToGenerativePart(fileInputEl.files);

  // To generate text output, call `generateContent` with the text and PDF file
  const result = await model.generateContent([prompt, pdfPart]);

  // Log the generated text, handling the case where it might be undefined
  console.log(result.response.text() ?? "No text in response.");
}

run();

Dart

You can call generateContent() to generate text from multimodal input of text and PDFs.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the PDF file
final prompt = TextPart("Summarize the important results in this report.");

// Prepare the PDF file for input
final doc = await File('document0.pdf').readAsBytes();

// Provide the PDF file as `Data` with the appropriate PDF file MIME type
final docPart = InlineDataPart('application/pdf', doc);

// To generate text output, call `generateContent` with the text and PDF file
final response = await model.generateContent([
  Content.multi([prompt,docPart])
]);

// Print the generated text
print(response.text);

Unity

You can call generateContent() to generate text from multimodal input of text and PDFs.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a text prompt to include with the PDF file
var prompt = ModelContent.Text("Summarize the important results in this report.");

// Provide the PDF file as `data` with the appropriate PDF file MIME type
var doc = ModelContent.InlineData("application/pdf",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
        UnityEngine.Application.streamingAssetsPath, "document0.pdf")));

// To generate text output, call `GenerateContentAsync` with the text and PDF file
var response = await model.GenerateContentAsync(new [] { prompt, doc });

// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Learn how to choose a model appropriate for your use case and app.

Stream the response

Before trying this sample, complete the Before you begin section of this guide to set up your project and app.
In that section, you'll also click a button for your chosen Gemini API provider so that you see provider-specific content on this page.

You can achieve faster interactions by not waiting for the entire result from the model generation, and instead use streaming to handle partial results. To stream the response, call generateContentStream.



Requirements and recommendations for input documents

Note that a file provided as inline data is encoded to base64 in transit, which increases the size of the request. You get an HTTP 413 error if a request is too large.

See "Supported input files and requirements for the Vertex AI Gemini API" to learn detailed information about the following:

Supported video MIME types

Gemini multimodal models support the following document MIME types:

Document MIME type Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
PDF - application/pdf
Text - text/plain

Limits per request

PDFs are treated as images, so a single page of a PDF is treated as one image. The number of pages allowed in a prompt is limited to the number of images the model can support:

  • Gemini 2.0 Flash and Gemini 2.0 Flash‑Lite:
    • Maximum files per request: 3,000
    • Maximum pages per file: 1,000
    • Maximum size per file: 50 MB



What else can you do?

Try out other capabilities

Learn how to control content generation

You can also experiment with prompts and model configurations and even get a generated code snippet using Google AI Studio.

Learn more about the supported models

Learn about the models available for various use cases and their quotas and pricing.


Give feedback about your experience with Firebase AI Logic