Analyser des fichiers audio à l'aide de l'API Gemini

Vous pouvez demander à un modèle Gemini d'analyser les fichiers audio que vous fournissez en ligne (encodés en base64) ou via une URL. Lorsque vous utilisez Firebase AI Logic, vous pouvez effectuer cette requête directement depuis votre application.

Grâce à cette fonctionnalité, vous pouvez par exemple:

  • décrire, résumer ou répondre à des questions sur un contenu audio ;
  • Transcrire du contenu audio
  • Analyser des segments spécifiques d'audio à l'aide d'horodatages

Accéder aux exemples de code Accéder au code pour les réponses en flux


Consultez d'autres guides pour découvrir d'autres options de travail avec l'audio
Générer une sortie structurée Chat multitour Streaming bidirectionnel

Avant de commencer

Cliquez sur votre fournisseur Gemini API pour afficher le contenu et le code spécifiques à ce fournisseur sur cette page.

Si ce n'est pas déjà fait, consultez le guide de démarrage, qui explique comment configurer votre projet Firebase, connecter votre application à Firebase, ajouter le SDK, initialiser le service backend pour le fournisseur Gemini API de votre choix et créer une instance GenerativeModel.

Pour tester et itérer vos requêtes, et même obtenir un extrait de code généré, nous vous recommandons d'utiliser Google AI Studio.

Générer du texte à partir de fichiers audio (encodés en base64)

Avant d'essayer cet exemple, consultez la section Avant de commencer de ce guide pour configurer votre projet et votre application.
Dans cette section, vous devrez également cliquer sur un bouton pour le fournisseurGemini API de votre choix afin d'afficher le contenu spécifique à ce fournisseur sur cette page.

Vous pouvez demander à un modèle Gemini de générer du texte à l'aide de requêtes textuelles et audio en fournissant le mimeType du fichier d'entrée et le fichier lui-même. Vous trouverez plus loin sur cette page les exigences et recommandations concernant les fichiers d'entrée.

Swift

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'un seul fichier audio.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the audio as `Data`
guard let audioData = try? Data(contentsOf: audioURL) else {
    print("Error loading audio data.")
    return // Or handle the error appropriately
}

// Specify the appropriate audio MIME type
let audio = InlineDataPart(data: audioData, mimeType: "audio/mpeg")


// Provide a text prompt to include with the audio
let prompt = "Transcribe what's said in this audio recording."

// To generate text output, call `generateContent` with the audio and text prompt
let response = try await model.generateContent(audio, prompt)

// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")

Kotlin

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'un seul fichier audio.

Pour Kotlin, les méthodes de ce SDK sont des fonctions de suspension et doivent être appelées à partir d'un champ d'application de coroutine.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver

val inputStream = contentResolver.openInputStream(audioUri)

if (inputStream != null) {  // Check if the audio loaded successfully
    inputStream.use { stream ->
        val bytes = stream.readBytes()

        // Provide a prompt that includes the audio specified above and text
        val prompt = content {
            inlineData(bytes, "audio/mpeg")  // Specify the appropriate audio MIME type
            text("Transcribe what's said in this audio recording.")
        }

        // To generate text output, call `generateContent` with the prompt
        val response = generativeModel.generateContent(prompt)

        // Log the generated text, handling the case where it might be null
        Log.d(TAG, response.text?: "")
    }
} else {
    Log.e(TAG, "Error getting input stream for audio.")
    // Handle the error appropriately
}

Java

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'un seul fichier audio.

Pour Java, les méthodes de ce SDK renvoient un ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();

try (InputStream stream = resolver.openInputStream(audioUri)) {
    File audioFile = new File(new URI(audioUri.toString()));
    int audioSize = (int) audioFile.length();
    byte audioBytes = new byte[audioSize];
    if (stream != null) {
        stream.read(audioBytes, 0, audioBytes.length);
        stream.close();

        // Provide a prompt that includes the audio specified above and text
        Content prompt = new Content.Builder()
              .addInlineData(audioBytes, "audio/mpeg")  // Specify the appropriate audio MIME type
              .addText("Transcribe what's said in this audio recording.")
              .build();

        // To generate text output, call `generateContent` with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String text = result.getText();
                Log.d(TAG, (text == null) ? "" : text);
            }
            @Override
            public void onFailure(Throwable t) {
                Log.e(TAG, "Failed to generate a response", t);
            }
        }, executor);
    } else {
        Log.e(TAG, "Error getting input stream for file.");
        // Handle the error appropriately
    }
} catch (IOException e) {
    Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
    Log.e(TAG, "Invalid audio file", e);
}

Web

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'un seul fichier audio.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(','));
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the audio
  const prompt = "Transcribe what's said in this audio recording.";

  // Prepare audio for input
  const fileInputEl = document.querySelector("input[type=file]");
  const audioPart = await fileToGenerativePart(fileInputEl.files);

  // To generate text output, call `generateContent` with the text and audio
  const result = await model.generateContent([prompt, audioPart]);

  // Log the generated text, handling the case where it might be undefined
  console.log(result.response.text() ?? "No text in response.");
}

run();

Dart

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'un seul fichier audio.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the audio
final prompt = TextPart("Transcribe what's said in this audio recording.");

// Prepare audio for input
final audio = await File('audio0.mp3').readAsBytes();

// Provide the audio as `Data` with the appropriate audio MIME type
final audioPart = InlineDataPart('audio/mpeg', audio);

// To generate text output, call `generateContent` with the text and audio
final response = await model.generateContent([
  Content.multi([prompt,audioPart])
]);

// Print the generated text
print(response.text);

Unity

Vous pouvez appeler GenerateContentAsync() pour générer du texte à partir d'une entrée multimodale de texte et d'un seul fichier audio.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a text prompt to include with the audio
var prompt = ModelContent.Text("Transcribe what's said in this audio recording.");

// Provide the audio as `data` with the appropriate audio MIME type
var audio = ModelContent.InlineData("audio/mpeg",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
        UnityEngine.Application.streamingAssetsPath, "audio0.mp3")));

// To generate text output, call `GenerateContentAsync` with the text and audio
var response = await model.GenerateContentAsync(new [] { prompt, audio });

// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Découvrez comment choisir un modèle adapté à votre cas d'utilisation et à votre application.

Afficher la réponse de manière progressive

Avant d'essayer cet exemple, consultez la section Avant de commencer de ce guide pour configurer votre projet et votre application.
Dans cette section, vous devrez également cliquer sur un bouton pour le fournisseurGemini API de votre choix afin d'afficher le contenu spécifique à ce fournisseur sur cette page.

Vous pouvez accélérer les interactions en n'attendant pas le résultat complet de la génération du modèle, et en utilisant plutôt le streaming pour gérer les résultats partiels. Pour diffuser la réponse, appelez generateContentStream.



Exigences et recommandations concernant les fichiers audio d'entrée

Notez qu'un fichier fourni en tant que données intégrées est encodé en base64 en transit, ce qui augmente la taille de la requête. Vous recevez une erreur HTTP 413 si une requête est trop volumineuse.

Consultez la section "Fichiers d'entrée compatibles et exigences pour Vertex AI Gemini API" pour en savoir plus sur les éléments suivants:

Types MIME audio compatibles

Les modèles multimodaux Gemini sont compatibles avec les types audio MIME suivants:

Type MIME audio Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
AAC - audio/aac
FLAC - audio/flac
MP3 - audio/mp3
MPA - audio/m4a
MPEG - audio/mpeg
MPGA - audio/mpga
MP4 - audio/mp4
OPUS - audio/opus
PCM - audio/pcm
WAV - audio/wav
WEBM - audio/webm

Limites par requête

Vous pouvez inclure 1 fichier audio au maximum dans une requête.



Qu'est-ce que tu sais faire d'autre ?

  • Découvrez comment compter les jetons avant d'envoyer des requêtes longues au modèle.
  • Configurez Cloud Storage for Firebase pour pouvoir inclure de gros fichiers dans vos requêtes multimodales et disposer d'une solution plus gérée pour fournir des fichiers dans les requêtes. Il peut s'agir d'images, de PDF, de vidéos et de fichiers audio.
  • Commencez à penser à la préparation de la production (voir la checklist de production), y compris :

Essayer d'autres fonctionnalités

Découvrez comment contrôler la génération de contenu.

Vous pouvez également tester des requêtes et des configurations de modèle, et même obtenir un extrait de code généré à l'aide de Google AI Studio.

En savoir plus sur les modèles compatibles

Découvrez les modèles disponibles pour différents cas d'utilisation, ainsi que leurs quotas et leurs tarifs.


Envoyer des commentaires sur votre expérience avec Firebase AI Logic