Analisar arquivos de áudio usando a API Gemini

Você pode pedir a um modelo Gemini para analisar arquivos de áudio fornecidos inline (codificados em base64) ou por URL. Ao usar Firebase AI Logic, é possível fazer essa solicitação diretamente no app.

Com esse recurso, é possível:

  • Descrever, resumir ou responder a perguntas sobre conteúdo de áudio
  • Transcrever conteúdo de áudio
  • Analisar segmentos específicos de áudio usando carimbos de data/hora

Ir para exemplos de código Ir para o código das respostas transmitidas por streaming


Consulte outros guias para conferir outras opções de trabalho com áudio
Gerar saída estruturada Chat multiturno Streaming bidirecional

Antes de começar

Clique no seu provedor de Gemini API para conferir o conteúdo e o código específicos do provedor nesta página.

Se ainda não tiver feito isso, conclua o guia de início, que descreve como configurar seu projeto do Firebase, conectar seu app ao Firebase, adicionar o SDK, inicializar o serviço de back-end para o provedor de Gemini API escolhido e criar uma instância de GenerativeModel.

Para testar e iterar comandos e até receber um snippet de código gerado, recomendamos usar Google AI Studio.

Gerar texto com base em arquivos de áudio (codificado em base64)

Antes de testar este exemplo, conclua a seção Antes de começar deste guia para configurar seu projeto e app.
Nessa seção, você também clicará em um botão do provedor Gemini API escolhido para acessar o conteúdo específico do provedor nessa página.

É possível pedir a um modelo Gemini para gerar texto solicitando com texto e áudio, fornecendo o mimeType do arquivo de entrada e o arquivo em si. Confira requisitos e recomendações para arquivos de entrada mais adiante nesta página.

Swift

É possível chamar generateContent() para gerar texto a partir de uma entrada multimodal de texto e um único arquivo de áudio.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the audio as `Data`
guard let audioData = try? Data(contentsOf: audioURL) else {
    print("Error loading audio data.")
    return // Or handle the error appropriately
}

// Specify the appropriate audio MIME type
let audio = InlineDataPart(data: audioData, mimeType: "audio/mpeg")


// Provide a text prompt to include with the audio
let prompt = "Transcribe what's said in this audio recording."

// To generate text output, call `generateContent` with the audio and text prompt
let response = try await model.generateContent(audio, prompt)

// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")

Kotlin

É possível chamar generateContent() para gerar texto a partir de uma entrada multimodal de texto e um único arquivo de áudio.

No Kotlin, os métodos neste SDK são funções de suspensão e precisam ser chamados de um escopo de corrotina.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver

val inputStream = contentResolver.openInputStream(audioUri)

if (inputStream != null) {  // Check if the audio loaded successfully
    inputStream.use { stream ->
        val bytes = stream.readBytes()

        // Provide a prompt that includes the audio specified above and text
        val prompt = content {
            inlineData(bytes, "audio/mpeg")  // Specify the appropriate audio MIME type
            text("Transcribe what's said in this audio recording.")
        }

        // To generate text output, call `generateContent` with the prompt
        val response = generativeModel.generateContent(prompt)

        // Log the generated text, handling the case where it might be null
        Log.d(TAG, response.text?: "")
    }
} else {
    Log.e(TAG, "Error getting input stream for audio.")
    // Handle the error appropriately
}

Java

É possível chamar generateContent() para gerar texto a partir de uma entrada multimodal de texto e um único arquivo de áudio.

Em Java, os métodos neste SDK retornam um ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();

try (InputStream stream = resolver.openInputStream(audioUri)) {
    File audioFile = new File(new URI(audioUri.toString()));
    int audioSize = (int) audioFile.length();
    byte audioBytes = new byte[audioSize];
    if (stream != null) {
        stream.read(audioBytes, 0, audioBytes.length);
        stream.close();

        // Provide a prompt that includes the audio specified above and text
        Content prompt = new Content.Builder()
              .addInlineData(audioBytes, "audio/mpeg")  // Specify the appropriate audio MIME type
              .addText("Transcribe what's said in this audio recording.")
              .build();

        // To generate text output, call `generateContent` with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String text = result.getText();
                Log.d(TAG, (text == null) ? "" : text);
            }
            @Override
            public void onFailure(Throwable t) {
                Log.e(TAG, "Failed to generate a response", t);
            }
        }, executor);
    } else {
        Log.e(TAG, "Error getting input stream for file.");
        // Handle the error appropriately
    }
} catch (IOException e) {
    Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
    Log.e(TAG, "Invalid audio file", e);
}

Web

É possível chamar generateContent() para gerar texto a partir de uma entrada multimodal de texto e um único arquivo de áudio.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(','));
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the audio
  const prompt = "Transcribe what's said in this audio recording.";

  // Prepare audio for input
  const fileInputEl = document.querySelector("input[type=file]");
  const audioPart = await fileToGenerativePart(fileInputEl.files);

  // To generate text output, call `generateContent` with the text and audio
  const result = await model.generateContent([prompt, audioPart]);

  // Log the generated text, handling the case where it might be undefined
  console.log(result.response.text() ?? "No text in response.");
}

run();

Dart

É possível chamar generateContent() para gerar texto a partir de uma entrada multimodal de texto e um único arquivo de áudio.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the audio
final prompt = TextPart("Transcribe what's said in this audio recording.");

// Prepare audio for input
final audio = await File('audio0.mp3').readAsBytes();

// Provide the audio as `Data` with the appropriate audio MIME type
final audioPart = InlineDataPart('audio/mpeg', audio);

// To generate text output, call `generateContent` with the text and audio
final response = await model.generateContent([
  Content.multi([prompt,audioPart])
]);

// Print the generated text
print(response.text);

Unity

É possível chamar generateContent() para gerar texto a partir de uma entrada multimodal de texto e um único arquivo de áudio.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a text prompt to include with the audio
var prompt = ModelContent.Text("Transcribe what's said in this audio recording.");

// Provide the audio as `data` with the appropriate audio MIME type
var audio = ModelContent.InlineData("audio/mpeg",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
        UnityEngine.Application.streamingAssetsPath, "audio0.mp3")));

// To generate text output, call `GenerateContentAsync` with the text and audio
var response = await model.GenerateContentAsync(new [] { prompt, audio });

// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Saiba como escolher um modelo adequado para seu caso de uso e app.

Transmitir a resposta

Antes de testar este exemplo, conclua a seção Antes de começar deste guia para configurar seu projeto e app.
Nessa seção, você também clicará em um botão do provedor Gemini API escolhido para acessar o conteúdo específico do provedor nessa página.

É possível alcançar interações mais rápidas sem esperar pelo resultado completo da geração do modelo e, em vez disso, usar o streaming para processar resultados parciais. Para transmitir a resposta, chame generateContentStream.



Requisitos e recomendações para arquivos de áudio de entrada

Um arquivo fornecido como dados inline é codificado em base64 em trânsito, o que aumenta o tamanho da solicitação. Você vai receber um erro HTTP 413 se uma solicitação for muito grande.

Consulte "Arquivos de entrada e requisitos compatíveis com o Vertex AI Gemini API" para saber mais sobre o seguinte:

Tipos MIME de áudio aceitos

Os modelos multimodais Gemini são compatíveis com os seguintes tipos MIME de áudio:

Tipo MIME de áudio Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
AAC - audio/aac
FLAC - audio/flac
MP3 - audio/mp3
MPA - audio/m4a
MPEG - audio/mpeg
MPGA - audio/mpga
MP4 - audio/mp4
OPUS - audio/opus
PCM - audio/pcm
WAV - audio/wav
WEBM - audio/webm

Limites por solicitação

Você pode incluir no máximo 1 arquivo de áudio em uma solicitação de comando.



O que mais você pode fazer?

Testar outros recursos

Saiba como controlar a geração de conteúdo

Você também pode testar comandos e configurações de modelo e até mesmo receber um snippet de código gerado usando Google AI Studio.

Saiba mais sobre os modelos compatíveis

Saiba mais sobre os modelos disponíveis para vários casos de uso e as cotas e o preço.


Enviar feedback sobre sua experiência com o Firebase AI Logic