使用 Gemini API 產生結構化輸出內容 (例如 JSON 和列舉)

Gemini API 預設會以非結構化文字格式傳回回應。不過,某些用途需要結構化文字,例如 JSON。舉例來說,您可能會將回應用於其他需要已建立資料結構定義的下游工作。

為確保模型產生的輸出內容一律遵循特定結構定義,您可以定義回覆結構定義,這類似於模型回覆的藍圖。接著,您可以直接從模型輸出內容中擷取資料,減少後置處理作業。

例如:

  • 確保模型回應會產生有效的 JSON,並符合您提供的結構定義。
    舉例來說,模型可以為食譜產生結構化項目,這些項目一律包含食譜名稱、食材清單和步驟。這樣一來,您就能更輕鬆地在應用程式的 UI 中剖析及顯示這項資訊。

  • 限制模型在分類工作中回應的方式。
    舉例來說,您可以讓模型使用特定一組標籤 (例如 positivenegative 等特定一組列舉) 為文字加上註解,而非模型產生的標籤 (可能會像 goodpositivenegativebad 一樣具有一定程度的變化)。

本指南說明如何在對 generateContent 的呼叫中提供 responseSchema,產生 JSON 輸出內容。雖然 Gemini 主要處理純文字輸入內容,但也可以針對多模態要求 (包含圖片、影片和音訊做為輸入內容) 產生結構化回應。

本頁底部提供更多範例,例如如何產生列舉值做為輸出內容

事前準備

按一下 Gemini API 供應商,即可在這個頁面上查看供應商專屬內容和程式碼。

如果您尚未完成,請參閱入門指南,瞭解如何設定 Firebase 專案、將應用程式連結至 Firebase、新增 SDK、為所選 Gemini API 供應器初始化後端服務,以及建立 GenerativeModel 例項。

如要測試並重複提示,甚至取得產生的程式碼片段,建議您使用 Google AI Studio

步驟 1:定義回應結構定義

定義回覆結構定義,指定模型輸出的結構、欄位名稱,以及每個欄位的預期資料類型。

模型產生回覆時,會使用提示中的欄位名稱和脈絡。為確保意圖明確,建議您使用明確的結構、不含歧義的欄位名稱,甚至視需要使用說明。

回應結構定義的注意事項

編寫回應結構定義時,請注意下列事項:

  • 回應結構定義的大小會計入輸入符記限制。

  • 回應結構定義功能支援下列回應 MIME 類型:

    • application/json:輸出回應架構中定義的 JSON (適用於結構化輸出要求)

    • text/x.enum:輸出回應結構定義的列舉值 (適用於分類工作)

  • 回應結構定義功能支援下列結構定義欄位:

    enum
    items
    maxItems
    nullable
    properties
    required

    如果您使用不支援的欄位,模型仍可處理要求,但會忽略該欄位。請注意,上述清單是 OpenAPI 3.0 架構物件的一小部分。

  • 根據預設,對於 Firebase AI Logic SDK,除非您在 optionalProperties 陣列中將所有欄位指定為選用欄位,否則系統會將所有欄位視為必要欄位。對於這些選填欄位,模型可以填入欄位或略過欄位。請注意,如果您直接使用兩個 Gemini API 供應商的伺服器 SDK 或 API,這會與他們的預設行為相反。

步驟 2:使用回應結構定義產生 JSON 輸出

在嘗試這個範例之前,請先完成本指南「開始前」一節,設定專案和應用程式。
在該部分,您也需要點選所選Gemini API供應商的按鈕,才能在本頁面上看到供應商專屬內容

以下範例說明如何產生結構化 JSON 輸出內容。

建立 GenerativeModel 例項時,請指定適當的 responseMimeType (在本例中為 application/json),以及要讓模型使用的 responseSchema

Swift


import FirebaseAI

// Provide a JSON schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
let jsonSchema = Schema.object(
  properties: [
    "characters": Schema.array(
      items: .object(
        properties: [
          "name": .string(),
          "age": .integer(),
          "species": .string(),
          "accessory": .enumeration(values: ["hat", "belt", "shoes"]),
        ],
        optionalProperties: ["accessory"]
      )
    ),
  ]
)

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(
  modelName: "gemini-2.0-flash",
  // In the generation config, set the `responseMimeType` to `application/json`
  // and pass the JSON schema object into `responseSchema`.
  generationConfig: GenerationConfig(
    responseMIMEType: "application/json",
    responseSchema: jsonSchema
  )
)

let prompt = "For use in a children's card game, generate 10 animal-based characters."

let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")

Kotlin

對於 Kotlin,這個 SDK 中的函式為暫停函式,需要從 協同程式範圍中呼叫。

// Provide a JSON schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
val jsonSchema = Schema.obj(
    mapOf("characters" to Schema.array(
        Schema.obj(
            mapOf(
                "name" to Schema.string(),
                "age" to Schema.integer(),
                "species" to Schema.string(),
                "accessory" to Schema.enumeration(listOf("hat", "belt", "shoes")),
            ),
            optionalProperties = listOf("accessory")
        )
    ))
)

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash",
    // In the generation config, set the `responseMimeType` to `application/json`
    // and pass the JSON schema object into `responseSchema`.
    generationConfig = generationConfig {
        responseMimeType = "application/json"
        responseSchema = jsonSchema
    })

val prompt = "For use in a children's card game, generate 10 animal-based characters."
val response = generativeModel.generateContent(prompt)
print(response.text)

Java

對於 Java,這個 SDK 中的串流方法會傳回 Reactive Streams 程式庫中的 Publisher 類型。

// Provide a JSON schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
Schema jsonSchema = Schema.obj(
        /* properties */
        Map.of(
                "characters", Schema.array(
                        /* items */ Schema.obj(
                                /* properties */
                                Map.of("name", Schema.str(),
                                        "age", Schema.numInt(),
                                        "species", Schema.str(),
                                        "accessory",
                                        Schema.enumeration(
                                                List.of("hat", "belt", "shoes")))
                        ))),
        List.of("accessory"));

// In the generation config, set the `responseMimeType` to `application/json`
// and pass the JSON schema object into `responseSchema`.
GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.responseMimeType = "application/json";
configBuilder.responseSchema = jsonSchema;

GenerationConfig generationConfig = configBuilder.build();

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel(
            /* modelName */ "gemini-2.0-flash",
            /* generationConfig */ generationConfig);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);

Content content = new Content.Builder()
    .addText("For use in a children's card game, generate 10 animal-based characters.")
    .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, Schema } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Provide a JSON schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
const jsonSchema = Schema.object({
 properties: {
    characters: Schema.array({
      items: Schema.object({
        properties: {
          name: Schema.string(),
          accessory: Schema.string(),
          age: Schema.number(),
          species: Schema.string(),
        },
        optionalProperties: ["accessory"],
      }),
    }),
  }
});

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash",
  // In the generation config, set the `responseMimeType` to `application/json`
  // and pass the JSON schema object into `responseSchema`.
  generationConfig: {
    responseMimeType: "application/json",
    responseSchema: jsonSchema
  },
});


let prompt = "For use in a children's card game, generate 10 animal-based characters.";

let result = await model.generateContent(prompt)
console.log(result.response.text());

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Provide a JSON schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
final jsonSchema = Schema.object(
        properties: {
          'characters': Schema.array(
            items: Schema.object(
              properties: {
                'name': Schema.string(),
                'age': Schema.integer(),
                'species': Schema.string(),
                'accessory':
                    Schema.enumString(enumValues: ['hat', 'belt', 'shoes']),
              },
            ),
          ),
        },
        optionalProperties: ['accessory'],
      );


// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(
        model: 'gemini-2.0-flash',
        // In the generation config, set the `responseMimeType` to `application/json`
        // and pass the JSON schema object into `responseSchema`.
        generationConfig: GenerationConfig(
            responseMimeType: 'application/json', responseSchema: jsonSchema));

final prompt = "For use in a children's card game, generate 10 animal-based characters.";
final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Unity


using Firebase;
using Firebase.AI;

// Provide a JSON schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
var jsonSchema = Schema.Object(
  properties: new System.Collections.Generic.Dictionary<string, Schema> {
    { "characters", Schema.Array(
      items: Schema.Object(
        properties: new System.Collections.Generic.Dictionary<string, Schema> {
          { "name", Schema.String() },
          { "age", Schema.Int() },
          { "species", Schema.String() },
          { "accessory", Schema.Enum(new string[] { "hat", "belt", "shoes" }) },
        },
        optionalProperties: new string[] { "accessory" }
      )
    ) },
  }
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
var model = FirebaseAI.DefaultInstance.GetGenerativeModel(
  modelName: "gemini-2.0-flash",
  // In the generation config, set the `responseMimeType` to `application/json`
  // and pass the JSON schema object into `responseSchema`.
  generationConfig: new GenerationConfig(
    responseMimeType: "application/json",
    responseSchema: jsonSchema
  )
);

var prompt = "For use in a children's card game, generate 10 animal-based characters.";

var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

瞭解如何選擇適合用途和應用程式的模型

其他範例

以下列舉其他範例,說明如何使用及產生結構化輸出內容。

產生列舉值做為輸出內容

在嘗試這個範例前,請先完成本指南的「開始前」一節,設定專案和應用程式。
在該部分,您也需要點選所選Gemini API供應商的按鈕,才能在本頁面上看到供應商專屬內容

以下範例說明如何為分類工作使用回應結構定義。請模型根據電影說明,識別電影類型。輸出內容是模型從提供的回應結構定義中定義的值清單中選取的一個純文字列舉值。

如要執行這項結構化分類工作,您必須在模型初始化期間指定適當的 responseMimeType (本例為 text/x.enum),以及要讓模型使用的 responseSchema

Swift


import FirebaseAI

// Provide an enum schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
let enumSchema = Schema.enumeration(values: ["drama", "comedy", "documentary"])

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(
  modelName: "gemini-2.0-flash",
  // In the generation config, set the `responseMimeType` to `text/x.enum`
  // and pass the enum schema object into `responseSchema`.
  generationConfig: GenerationConfig(
    responseMIMEType: "text/x.enum",
    responseSchema: enumSchema
  )
)

let prompt = """
The film aims to educate and inform viewers about real-life subjects, events, or people.
It offers a factual record of a particular topic by combining interviews, historical footage,
and narration. The primary purpose of a film is to present information and provide insights
into various aspects of reality.
"""

let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")

Kotlin

對於 Kotlin,這個 SDK 中的函式為暫停函式,需要從 協同程式範圍中呼叫。

// Provide an enum schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
val enumSchema = Schema.enumeration(listOf("drama", "comedy", "documentary"))

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash",
    // In the generation config, set the `responseMimeType` to `text/x.enum`
    // and pass the enum schema object into `responseSchema`.
    generationConfig = generationConfig {
        responseMimeType = "text/x.enum"
        responseSchema = enumSchema
    })

val prompt = """
    The film aims to educate and inform viewers about real-life subjects, events, or people.
    It offers a factual record of a particular topic by combining interviews, historical footage,
    and narration. The primary purpose of a film is to present information and provide insights
    into various aspects of reality.
    """
val response = generativeModel.generateContent(prompt)
print(response.text)

Java

對於 Java,這個 SDK 中的串流方法會傳回 Reactive Streams 程式庫中的 Publisher 類型。

// Provide an enum schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
Schema enumSchema = Schema.enumeration(List.of("drama", "comedy", "documentary"));

// In the generation config, set the `responseMimeType` to `text/x.enum`
// and pass the enum schema object into `responseSchema`.
GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.responseMimeType = "text/x.enum";
configBuilder.responseSchema = enumSchema;

GenerationConfig generationConfig = configBuilder.build();

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel(
            /* modelName */ "gemini-2.0-flash",
            /* generationConfig */ generationConfig);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);

String prompt = "The film aims to educate and inform viewers about real-life subjects," +
                " events, or people. It offers a factual record of a particular topic by" +
                " combining interviews, historical footage, and narration. The primary purpose" +
                " of a film is to present information and provide insights into various aspects" +
                " of reality.";

Content content = new Content.Builder().addText(prompt).build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, Schema } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Provide an enum schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
const enumSchema = Schema.enumString({
  enum: ["drama", "comedy", "documentary"],
});

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash",
  // In the generation config, set the `responseMimeType` to `text/x.enum`
  // and pass the JSON schema object into `responseSchema`.
  generationConfig: {
    responseMimeType: "text/x.enum",
    responseSchema: enumSchema,
  },
});

let prompt = `The film aims to educate and inform viewers about real-life
subjects, events, or people. It offers a factual record of a particular topic
by combining interviews, historical footage, and narration. The primary purpose
of a film is to present information and provide insights into various aspects
of reality.`;

let result = await model.generateContent(prompt);
console.log(result.response.text());

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Provide an enum schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
final enumSchema = Schema.enumString(enumValues: ['drama', 'comedy', 'documentary']);

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(
        model: 'gemini-2.0-flash',
        // In the generation config, set the `responseMimeType` to `text/x.enum`
        // and pass the enum schema object into `responseSchema`.
        generationConfig: GenerationConfig(
            responseMimeType: 'text/x.enum', responseSchema: enumSchema));

final prompt = """
      The film aims to educate and inform viewers about real-life subjects, events, or people.
      It offers a factual record of a particular topic by combining interviews, historical footage, 
      and narration. The primary purpose of a film is to present information and provide insights
      into various aspects of reality.
      """;
final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Unity


using Firebase;
using Firebase.AI;

// Provide an enum schema object using a standard format.
// Later, pass this schema object into `responseSchema` in the generation config.
var enumSchema = Schema.Enum(new string[] { "drama", "comedy", "documentary" });

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
var model = FirebaseAI.DefaultInstance.GetGenerativeModel(
  modelName: "gemini-2.0-flash",
  // In the generation config, set the `responseMimeType` to `text/x.enum`
  // and pass the enum schema object into `responseSchema`.
  generationConfig: new GenerationConfig(
    responseMimeType: "text/x.enum",
    responseSchema: enumSchema
  )
);

var prompt = @"
The film aims to educate and inform viewers about real-life subjects, events, or people.
It offers a factual record of a particular topic by combining interviews, historical footage,
and narration. The primary purpose of a film is to present information and provide insights
into various aspects of reality.
";

var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

瞭解如何選擇適合用途和應用程式的模型

其他控管內容產生作業的選項

  • 進一步瞭解提示設計,以便影響模型產生符合您需求的輸出內容。
  • 設定模型參數,控制模型產生回覆的方式。對於 Gemini 模型,這些參數包括輸出符記數量上限、溫度、topK 和 topP。對於 Imagen 模型,這些參數包括顯示比例、人物生成、浮水印等。
  • 您可以使用安全性設定調整可能會收到有害回覆的機率,包括仇恨言論和煽情露骨內容。
  • 設定系統指令,即可引導模型的行為。這項功能就像是前言,可在模型公開給使用者進一步指示之前新增。


針對使用 Firebase AI Logic 的體驗提供意見回饋