إنشاء نص باستخدام Gemini API

يمكنك أن تطلب من نموذج Gemini إنشاء نص من طلب نصي فقط أو طلب متعدد الوسائط. عند استخدام Firebase AI Logic، يمكنك تقديم هذا الطلب مباشرةً من تطبيقك.

يمكن أن تتضمّن الطلبات المتعدّدة الوسائط أنواعًا متعدّدة من الإدخال (مثل النصوص والصور وملفات PDF وملفات النصوص العادية والمقاطع الصوتية والفيديوهات).

يوضّح هذا الدليل كيفية إنشاء نص من طلب نصي فقط ومن طلب أساسي متعدّد الوسائط يتضمّن ملفًا.

الانتقال إلى نماذج الرموز البرمجية للإدخال النصي فقط الانتقال إلى نماذج الرموز البرمجية للإدخال باستخدام وسائط متعددة


قبل البدء

انقر على مزوّد Gemini API لعرض المحتوى الخاص بالمزوّد والرمز البرمجي في هذه الصفحة.

أكمِل قراءة دليل البدء، الذي يوضّح كيفية إعداد مشروعك على Firebase وربط تطبيقك بـ Firebase وإضافة حزمة تطوير البرامج (SDK) وبدء خدمة الخلفية لمزوّد Gemini API الذي اخترته، وإنشاء مثيل GenerativeModel، إذا لم يسبق لك إجراء ذلك.

لاختبار طلباتك وتكرارها وحتى الحصول على مقتطف رمز تم إنشاؤه، ننصحك باستخدام Google AI Studio.

إنشاء نص من إدخال نصي فقط

قبل تجربة هذا العيّنة، عليك إكمال القسم قبل البدء من هذا الدليل لإعداد مشروعك وتطبيقك.
في هذا القسم، عليك أيضًا النقر على زر Gemini API مقدّم الخدمة الذي اخترته حتى يظهر لك المحتوى الخاص بالمقدّم في هذه الصفحة.

يمكنك أن تطلب من نموذج Gemini إنشاء نص من خلال تقديم طلب باستخدام إدخال نصي فقط.

يمكنك استخدام الرمز generateContent() لإنشاء نص من إدخال نصي فقط.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."

// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")

يمكنك استخدام الرمز generateContent() لإنشاء نص من إدخال نصي فقط.

بالنسبة إلى Kotlin، تكون الطرق في حزمة تطوير البرامج (SDK) هذه دوالّ معلّقة ويجب استدعاؤها من نطاق Coroutine.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."

// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)

يمكنك استخدام الرمز generateContent() لإنشاء نص من إدخال نصي فقط.

بالنسبة إلى Java، تعرض الطرق في حزمة تطوير البرامج (SDK) هذه رمز ملف برمجي هو ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


// Provide a prompt that contains text
Content prompt = new Content.Builder()
    .addText("Write a story about a magic backpack.")
    .build();

// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

يمكنك استخدام الرمز generateContent() لإنشاء نص من إدخال نصي فقط.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Wrap in an async function so you can use await
async function run() {
  // Provide a prompt that contains text
  const prompt = "Write a story about a magic backpack."

  // To generate text output, call generateContent with the text input
  const result = await model.generateContent(prompt);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

يمكنك استخدام رمز الرمز التالي: generateContent() لإنشاء نص من إدخال نصي فقط.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);

يمكنك استخدام الرمز GenerateContentAsync() لإنشاء نص من إدخال نصي فقط.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";

// To generate text output, call GenerateContentAsync with the text input
var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

إنشاء نص من إدخال نص وملف (متعدّد الوسائط)

قبل تجربة هذا العيّنة، عليك إكمال القسم قبل البدء من هذا الدليل لإعداد مشروعك وتطبيقك.
في هذا القسم، عليك أيضًا النقر على زر Gemini API مقدّم الخدمة الذي اخترته حتى يظهر لك المحتوى الخاص بالمقدّم في هذه الصفحة.

يمكنك أن تطلب من نموذج Gemini إنشاء نص من خلال تقديم نص وملف، مع توفيرmimeType لكل ملف إدخال والملف نفسه. يمكنك الاطّلاع على المتطلبات والاقتراحات المتعلّقة بملفات الإدخال لاحقًا في هذه الصفحة.

يعرض المثال التالي أساسيات كيفية إنشاء نص من إدخال ملف، وذلك من خلال تحليل ملف فيديو واحد مقدَّم كبيانات مضمّنة (ملف مُرمّز بترميز base64).

يُرجى العِلم أنّ هذا المثال يعرض تقديم الملف مضمّنًا، ولكن حزم SDK تتيح أيضًا تقديم عنوان URL لفيديو على YouTube.

يمكنك استخدام هذا الملف المتاح للجميع بنوع MIME‏ video/mp4 (عرض الملف أو تنزيله). https://storage.googleapis.com/cloud-samples-data/video/animals.mp4

يمكنك الاتصال بـ generateContent() لإنشاء نص من إدخال متعدد الوسائط لملفات النصوص وملفات الفيديو.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")

// Provide a text prompt to include with the video
let prompt = "What is in the video?"

// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")

يمكنك الاتصال بـ generateContent() لإنشاء نص من إدخال متعدد الوسائط لملفات النصوص وملفات الفيديو.

بالنسبة إلى Kotlin، تكون الطرق في حزمة تطوير البرامج (SDK) هذه دوالّ معلّقة ويجب استدعاؤها من نطاق Coroutine.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    // Provide a prompt that includes the video specified above and text
    val prompt = content {
        inlineData(bytes, "video/mp4")
        text("What is in the video?")
    }

    // To generate text output, call generateContent with the prompt
    val response = generativeModel.generateContent(prompt)
    Log.d(TAG, response.text ?: "")
  }
}

يمكنك الاتصال بـ generateContent() لإنشاء نص من إدخال متعدد الوسائط لملفات النصوص وملفات الفيديو.

بالنسبة إلى Java، تعرض الطرق في حزمة تطوير البرامج (SDK) هذه رمز ملف برمجي هو ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes the video specified above and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("What is in the video?")
                .build();

        // To generate text output, call generateContent with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        }, executor);
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

يمكنك الاتصال بـ generateContent() لإنشاء نص من إدخال متعدد الوسائط لملفات النصوص وملفات الفيديو.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the video
  const prompt = "What do you see?";

  const fileInputEl = document.querySelector("input[type=file]");
  const videoPart = await fileToGenerativePart(fileInputEl.files[0]);

  // To generate text output, call generateContent with the text and video
  const result = await model.generateContent([prompt, videoPart]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

يمكنك الاتصال بـ generateContent() لإنشاء نص من إدخال متعدد الوسائط لملفات النصوص وملفات الفيديو.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");

// Prepare video for input
final video = await File('video0.mp4').readAsBytes();

// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);

// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
  Content.multi([prompt, ...videoPart])
]);
print(response.text);

يمكنك الاتصال بـ GenerateContentAsync() لإنشاء نص من إدخال متعدد الوسائط لملفات النصوص وملفات الفيديو.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
          UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));

// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");

// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

تعرَّف على كيفية اختيار نموذج مناسب لحالة الاستخدام والتطبيق.

عرض الردّ تدريجيًا

قبل تجربة هذا العيّنة، عليك إكمال القسم قبل البدء من هذا الدليل لإعداد مشروعك وتطبيقك.
في هذا القسم، عليك أيضًا النقر على زر Gemini API مقدّم الخدمة الذي اخترته حتى يظهر لك المحتوى الخاص بالمقدّم في هذه الصفحة.

يمكنك تحقيق تفاعلات أسرع من خلال عدم انتظار النتيجة الكاملة من إنشاء النموذج، واستخدام البث بدلاً من ذلك للتعامل مع النتائج الجزئية. لبث الردّ، اتصل على generateContentStream.

يمكنك استخدام الرمز التالي generateContentStream() لبث النص الذي تم إنشاؤه من إدخال نصي فقط.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."

// To stream generated text output, call generateContentStream with the text input
let contentStream = try model.generateContentStream(prompt)
for try await chunk in contentStream {
  if let text = chunk.text {
    print(text)
  }
}

يمكنك استخدام الرمز التالي generateContentStream() لبث النص الذي تم إنشاؤه من إدخال نصي فقط.

بالنسبة إلى Kotlin، تكون الطرق في حزمة تطوير البرامج (SDK) هذه دوالّ معلّقة ويجب استدعاؤها من نطاق Coroutine.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


// Provide a prompt that includes only text
val prompt = "Write a story about a magic backpack."

// To stream generated text output, call generateContentStream and pass in the prompt
var response = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
    print(chunk.text)
    response += chunk.text
}

يمكنك استخدام الرمز التالي generateContentStream() لبث النص الذي تم إنشاؤه من إدخال نصي فقط.

بالنسبة إلى Java، تُعرِض طُرق البث في حزمة SDK هذه نوعًا Publisher من مكتبة Reactive Streams.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


// Provide a prompt that contains text
Content prompt = new Content.Builder()
        .addText("Write a story about a magic backpack.")
        .build();

// To stream generated text output, call generateContentStream with the text input
Publisher<GenerateContentResponse> streamingResponse =
    model.generateContentStream(prompt);

// Subscribe to partial results from the response
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
  @Override
  public void onNext(GenerateContentResponse generateContentResponse) {
    String chunk = generateContentResponse.getText();
    fullResponse[0] += chunk;
  }

  @Override
  public void onComplete() {
    System.out.println(fullResponse[0]);
  }

  @Override
  public void onError(Throwable t) {
    t.printStackTrace();
  }

  @Override
  public void onSubscribe(Subscription s) { }
});

يمكنك استخدام الرمز التالي generateContentStream() لبث النص الذي تم إنشاؤه من إدخال نصي فقط.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Wrap in an async function so you can use await
async function run() {
  // Provide a prompt that contains text
  const prompt = "Write a story about a magic backpack."

  // To stream generated text output, call generateContentStream with the text input
  const result = await model.generateContentStream(prompt);

  for await (const chunk of result.stream) {
    const chunkText = chunk.text();
    console.log(chunkText);
  }

  console.log('aggregated response: ', await result.response);
}

run();

يمكنك استخدام الرمز generateContentStream() لبث النص الذي تم إنشاؤه من إدخال نصي فقط.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

// To stream generated text output, call generateContentStream with the text input
final response = model.generateContentStream(prompt);
await for (final chunk in response) {
  print(chunk.text);
}

يمكنك استخدام الرمز التالي GenerateContentStreamAsync() لبث النص الذي تم إنشاؤه من إدخال نصي فقط.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";

// To stream generated text output, call GenerateContentStreamAsync with the text input
var responseStream = model.GenerateContentStreamAsync(prompt);
await foreach (var response in responseStream) {
  if (!string.IsNullOrWhiteSpace(response.Text)) {
    UnityEngine.Debug.Log(response.Text);
  }
}

يمكنك استخدام رمز السهم المتّجه للأسفل generateContentStream() لبث النص الذي تم إنشاؤه من خلال إدخال نص ومحتوى فيديو واحد باستخدام تقنيات متعددة.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the video as `Data` with the appropriate MIME type
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")

// Provide a text prompt to include with the video
let prompt = "What is in the video?"

// To stream generated text output, call generateContentStream with the text and video
let contentStream = try model.generateContentStream(video, prompt)
for try await chunk in contentStream {
  if let text = chunk.text {
    print(text)
  }
}

يمكنك استخدام رمز السهم المتّجه للأسفل generateContentStream() لبث النص الذي تم إنشاؤه من خلال إدخال نص ومحتوى فيديو واحد باستخدام تقنيات متعددة.

بالنسبة إلى Kotlin، تكون الطرق في حزمة تطوير البرامج (SDK) هذه دوالّ معلّقة ويجب استدعاؤها من نطاق Coroutine.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    // Provide a prompt that includes the video specified above and text
    val prompt = content {
        inlineData(bytes, "video/mp4")
        text("What is in the video?")
    }

    // To stream generated text output, call generateContentStream with the prompt
    var fullResponse = ""
    generativeModel.generateContentStream(prompt).collect { chunk ->
        Log.d(TAG, chunk.text ?: "")
        fullResponse += chunk.text
    }
  }
}

يمكنك استخدام رمز السهم المتّجه للأسفل generateContentStream() لبث النص الذي تم إنشاؤه من خلال إدخال نص ومحتوى فيديو واحد باستخدام تقنيات متعددة.

بالنسبة إلى Java، تُعرِض طُرق البث في حزمة SDK هذه نوعًا Publisher من مكتبة Reactive Streams.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes the video specified above and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("What is in the video?")
                .build();

        // To stream generated text output, call generateContentStream with the prompt
        Publisher<GenerateContentResponse> streamingResponse =
                model.generateContentStream(prompt);

        final String[] fullResponse = {""};

        streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
            @Override
            public void onNext(GenerateContentResponse generateContentResponse) {
                String chunk = generateContentResponse.getText();
                fullResponse[0] += chunk;
            }

            @Override
            public void onComplete() {
                System.out.println(fullResponse[0]);
            }

            @Override
            public void onError(Throwable t) {
                t.printStackTrace();
            }

            @Override
            public void onSubscribe(Subscription s) {
            }
         });
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

يمكنك استخدام رمز السهم المتّجه للأسفل generateContentStream() لبث النص الذي تم إنشاؤه من خلال إدخال نص ومحتوى فيديو واحد باستخدام تقنيات متعددة.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the video
  const prompt = "What do you see?";

  const fileInputEl = document.querySelector("input[type=file]");
  const videoPart = await fileToGenerativePart(fileInputEl.files[0]);

  // To stream generated text output, call generateContentStream with the text and video
  const result = await model.generateContentStream([prompt, videoPart]);

  for await (const chunk of result.stream) {
    const chunkText = chunk.text();
    console.log(chunkText);
  }
}

run();

يمكنك استخدام رمز السهم المتّجه للأسفل generateContentStream() لبث النص الذي تم إنشاؤه من خلال إدخال نص وفيديو واحد باستخدام تقنيات متعددة الوسائط.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");

// Prepare video for input
final video = await File('video0.mp4').readAsBytes();

// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);

// To stream generated text output, call generateContentStream with the text and image
final response = await model.generateContentStream([
  Content.multi([prompt,videoPart])
]);
await for (final chunk in response) {
  print(chunk.text);
}

يمكنك استخدام رمز السهم المتّجه للأسفل GenerateContentStreamAsync() لبث النص الذي تم إنشاؤه من خلال إدخال نص ومحتوى فيديو واحد باستخدام تقنيات متعددة.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
          UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));

// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");

// To stream generated text output, call GenerateContentStreamAsync with the text and video
var responseStream = model.GenerateContentStreamAsync(new [] { video, prompt });
await foreach (var response in responseStream) {
  if (!string.IsNullOrWhiteSpace(response.Text)) {
    UnityEngine.Debug.Log(response.Text);
  }
}



المتطلبات والاقتراحات المتعلّقة بملفات الصور المُدخلة

يُرجى العِلم أنّه يتم ترميز الملف المقدَّم كبيانات مضمّنة بترميز base64 أثناء نقله، ما يؤدي إلى زيادة حجم الطلب. يظهر لك خطأ HTTP 413 إذا كان الطلب كبيرًا جدًا.

اطّلِع على ملفات الإدخال المتوافقة ومتطلبات Vertex AI Gemini API للحصول على معلومات تفصيلية عن ما يلي:

  • خيارات مختلفة لتقديم ملف في طلب (إما مضمّنًا أو باستخدام عنوان URL أو معرّف الموارد المتّصل للملف)
  • أنواع الملفات المتوافقة
  • أنواع MIME المتوافقة وكيفية تحديدها
  • المتطلبات وأفضل الممارسات المتعلّقة بالملفات والطلبات المتعدّدة الوسائط



ما هي الإجراءات الأخرى التي يمكنك اتّخاذها؟

  • تعرَّف على كيفية احتساب الرموز المميّزة قبل إرسال طلبات طويلة إلى النموذج.
  • إعداد Cloud Storage for Firebase لكي تتمكّن من تضمين ملفات كبيرة في طلباتك المتعدّدة الوسائط والحصول على حلّ أكثر تنظيمًا لتقديم الملفات في طلباتك يمكن أن تتضمّن الملفات صورًا وملفات PDF وفيديوهات وملفات صوتية.
  • ابدأ التفكير في الاستعداد للإنتاج (اطّلِع على قائمة التحقّق من الإنتاج)، بما في ذلك:
    • إعداد Firebase App Check بهدف حماية Gemini API من إساءة استخدام العملاء غير المصرّح لهم
    • دمج Firebase Remote Config لتعديل القيم في تطبيقك (مثل اسم الطراز) بدون طرح إصدار جديد من التطبيق

تجربة إمكانات أخرى

التعرّف على كيفية التحكّم في إنشاء المحتوى

يمكنك أيضًا تجربة طلبات البحث وإعدادات النماذج، وحتى الحصول على مقتطف رمز تم إنشاؤه باستخدام Google AI Studio.

مزيد من المعلومات عن الطُرز المتوافقة

اطّلِع على مزيد من المعلومات عن النماذج المتاحة لحالات الاستخدام المختلفة واطلاعك على الحصص و الأسعار.


تقديم ملاحظات حول تجربتك مع Firebase AI Logic