আপনি ইনলাইন (বেস 64-এনকোডেড) বা URL এর মাধ্যমে যে অডিও ফাইলগুলি প্রদান করেন সেগুলি বিশ্লেষণ করতে আপনি একটি জেমিনি মডেলকে বলতে পারেন৷ আপনি যখন Firebase AI Logic ব্যবহার করেন, তখন আপনি সরাসরি আপনার অ্যাপ থেকে এই অনুরোধ করতে পারেন।
এই ক্ষমতা দিয়ে, আপনি এই ধরনের কাজ করতে পারেন:
- বর্ণনা করুন, সংক্ষিপ্ত করুন বা অডিও বিষয়বস্তু সম্পর্কে প্রশ্নের উত্তর দিন
- অডিও বিষয়বস্তু প্রতিলিপি
- টাইমস্ট্যাম্প ব্যবহার করে অডিওর নির্দিষ্ট অংশ বিশ্লেষণ করুন
কোডের নমুনাগুলিতে ঝাঁপ দাও প্রবাহিত প্রতিক্রিয়াগুলির জন্য কোডে ঝাঁপ দাও
অডিওর সাথে কাজ করার জন্য অতিরিক্ত বিকল্পগুলির জন্য অন্যান্য গাইড দেখুন স্ট্রাকচার্ড আউটপুট মাল্টি-টার্ন চ্যাট দ্বিমুখী স্ট্রিমিং তৈরি করুন |
আপনি শুরু করার আগে
এই পৃষ্ঠায় প্রদানকারী-নির্দিষ্ট সামগ্রী এবং কোড দেখতে আপনার Gemini API প্রদানকারীতে ক্লিক করুন। |
যদি আপনি ইতিমধ্যে না করে থাকেন, শুরু করার নির্দেশিকাটি সম্পূর্ণ করুন, যা বর্ণনা করে যে কীভাবে আপনার Firebase প্রকল্প সেট আপ করবেন, আপনার অ্যাপকে Firebase-এ সংযুক্ত করবেন, SDK যোগ করবেন, আপনার নির্বাচিত Gemini API প্রদানকারীর জন্য ব্যাকএন্ড পরিষেবা শুরু করবেন এবং একটি GenerativeModel
উদাহরণ তৈরি করবেন।
আপনি এই সর্বজনীনভাবে উপলব্ধ ফাইলটি একটি MIME ধরনের
audio/mp3
( ফাইল দেখুন বা ডাউনলোড করুন ) এর সাথে ব্যবহার করতে পারেন৷https://storage.googleapis.com/cloud-samples-data/generative-ai/audio/pixel.mp3
অডিও ফাইল থেকে পাঠ্য তৈরি করুন (বেস64-এনকোডেড)
এই নমুনাটি চেষ্টা করার আগে, আপনার প্রকল্প এবং অ্যাপ সেট আপ করতে এই গাইডের শুরু করার আগে বিভাগটি সম্পূর্ণ করুন। সেই বিভাগে, আপনি আপনার নির্বাচিত Gemini API প্রদানকারীর জন্য একটি বোতামে ক্লিক করবেন যাতে আপনি এই পৃষ্ঠায় প্রদানকারী-নির্দিষ্ট সামগ্রী দেখতে পান । |
আপনি একটি মিথুন মডেলকে টেক্সট এবং অডিও সহ প্রম্পট করে টেক্সট তৈরি করতে বলতে পারেন—ইনপুট ফাইলের mimeType
এবং ফাইল নিজেই প্রদান করে। এই পৃষ্ঠায় পরে ইনপুট ফাইলের জন্য প্রয়োজনীয়তা এবং সুপারিশ খুঁজুন।
সুইফট
আপনি টেক্সট এবং একটি একক অডিও ফাইলের মাল্টিমডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the audio as `Data`
guard let audioData = try? Data(contentsOf: audioURL) else {
print("Error loading audio data.")
return // Or handle the error appropriately
}
// Specify the appropriate audio MIME type
let audio = InlineDataPart(data: audioData, mimeType: "audio/mpeg")
// Provide a text prompt to include with the audio
let prompt = "Transcribe what's said in this audio recording."
// To generate text output, call `generateContent` with the audio and text prompt
let response = try await model.generateContent(audio, prompt)
// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")
Kotlin
আপনি টেক্সট এবং একটি একক অডিও ফাইলের মাল্টিমডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
val inputStream = contentResolver.openInputStream(audioUri)
if (inputStream != null) { // Check if the audio loaded successfully
inputStream.use { stream ->
val bytes = stream.readBytes()
// Provide a prompt that includes the audio specified above and text
val prompt = content {
inlineData(bytes, "audio/mpeg") // Specify the appropriate audio MIME type
text("Transcribe what's said in this audio recording.")
}
// To generate text output, call `generateContent` with the prompt
val response = generativeModel.generateContent(prompt)
// Log the generated text, handling the case where it might be null
Log.d(TAG, response.text?: "")
}
} else {
Log.e(TAG, "Error getting input stream for audio.")
// Handle the error appropriately
}
Java
আপনি টেক্সট এবং একটি একক অডিও ফাইলের মাল্টিমডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
ListenableFuture
প্রদান করে।
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(audioUri)) {
File audioFile = new File(new URI(audioUri.toString()));
int audioSize = (int) audioFile.length();
byte audioBytes = new byte[audioSize];
if (stream != null) {
stream.read(audioBytes, 0, audioBytes.length);
stream.close();
// Provide a prompt that includes the audio specified above and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "audio/mpeg") // Specify the appropriate audio MIME type
.addText("Transcribe what's said in this audio recording.")
.build();
// To generate text output, call `generateContent` with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String text = result.getText();
Log.d(TAG, (text == null) ? "" : text);
}
@Override
public void onFailure(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
}, executor);
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid audio file", e);
}
Web
আপনি টেক্সট এবং একটি একক অডিও ফাইলের মাল্টিমডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(','));
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the audio
const prompt = "Transcribe what's said in this audio recording.";
// Prepare audio for input
const fileInputEl = document.querySelector("input[type=file]");
const audioPart = await fileToGenerativePart(fileInputEl.files);
// To generate text output, call `generateContent` with the text and audio
const result = await model.generateContent([prompt, audioPart]);
// Log the generated text, handling the case where it might be undefined
console.log(result.response.text() ?? "No text in response.");
}
run();
Dart
আপনি টেক্সট এবং একটি একক অডিও ফাইলের মাল্টিমডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the audio
final prompt = TextPart("Transcribe what's said in this audio recording.");
// Prepare audio for input
final audio = await File('audio0.mp3').readAsBytes();
// Provide the audio as `Data` with the appropriate audio MIME type
final audioPart = InlineDataPart('audio/mpeg', audio);
// To generate text output, call `generateContent` with the text and audio
final response = await model.generateContent([
Content.multi([prompt,audioPart])
]);
// Print the generated text
print(response.text);
ঐক্য
আপনি টেক্সট এবং একটি একক অডিও ফাইলের মাল্টিমোডাল ইনপুট থেকে টেক্সট তৈরি করতে GenerateContentAsync()
কল করতে পারেন।
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a text prompt to include with the audio
var prompt = ModelContent.Text("Transcribe what's said in this audio recording.");
// Provide the audio as `data` with the appropriate audio MIME type
var audio = ModelContent.InlineData("audio/mpeg",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "audio0.mp3")));
// To generate text output, call `GenerateContentAsync` with the text and audio
var response = await model.GenerateContentAsync(new [] { prompt, audio });
// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
আপনার ব্যবহারের ক্ষেত্রে এবং অ্যাপের জন্য উপযুক্ত একটি মডেল কীভাবে চয়ন করবেন তা শিখুন।
প্রতিক্রিয়া স্ট্রীম
এই নমুনাটি চেষ্টা করার আগে, আপনার প্রকল্প এবং অ্যাপ সেট আপ করতে এই গাইডের শুরু করার আগে বিভাগটি সম্পূর্ণ করুন। সেই বিভাগে, আপনি আপনার নির্বাচিত Gemini API প্রদানকারীর জন্য একটি বোতামে ক্লিক করবেন যাতে আপনি এই পৃষ্ঠায় প্রদানকারী-নির্দিষ্ট সামগ্রী দেখতে পান । |
আপনি মডেল জেনারেশন থেকে সম্পূর্ণ ফলাফলের জন্য অপেক্ষা না করে দ্রুত মিথস্ক্রিয়া অর্জন করতে পারেন এবং পরিবর্তে আংশিক ফলাফল পরিচালনা করতে স্ট্রিমিং ব্যবহার করতে পারেন। প্রতিক্রিয়া স্ট্রিম করতে, generateContentStream
কল করুন।
সুইফট
টেক্সটের মাল্টিমোডাল ইনপুট এবং একটি একক অডিও ফাইল থেকে জেনারেট করা টেক্সট স্ট্রিম করতে আপনি generateContentStream()
কল করতে পারেন।
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the audio as `Data`
guard let audioData = try? Data(contentsOf: audioURL) else {
print("Error loading audio data.")
return // Or handle the error appropriately
}
// Specify the appropriate audio MIME type
let audio = InlineDataPart(data: audioData, mimeType: "audio/mpeg")
// Provide a text prompt to include with the audio
let prompt = "Transcribe what's said in this audio recording."
// To stream generated text output, call `generateContentStream` with the audio and text prompt
let contentStream = try model.generateContentStream(audio, prompt)
// Print the generated text, handling the case where it might be nil
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Kotlin
টেক্সটের মাল্টিমোডাল ইনপুট এবং একটি একক অডিও ফাইল থেকে জেনারেট করা টেক্সট স্ট্রিম করতে আপনি generateContentStream()
কল করতে পারেন।
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
val inputStream = contentResolver.openInputStream(audioUri)
if (inputStream != null) { // Check if the audio loaded successfully
inputStream.use { stream ->
val bytes = stream.readBytes()
// Provide a prompt that includes the audio specified above and text
val prompt = content {
inlineData(bytes, "audio/mpeg") // Specify the appropriate audio MIME type
text("Transcribe what's said in this audio recording.")
}
// To stream generated text output, call `generateContentStream` with the prompt
var fullResponse = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
// Log the generated text, handling the case where it might be null
Log.d(TAG, chunk.text?: "")
fullResponse += chunk.text?: ""
}
}
} else {
Log.e(TAG, "Error getting input stream for audio.")
// Handle the error appropriately
}
Java
টেক্সটের মাল্টিমোডাল ইনপুট এবং একটি একক অডিও ফাইল থেকে জেনারেট করা টেক্সট স্ট্রিম করতে আপনি generateContentStream()
কল করতে পারেন।
Publisher
টাইপ ফেরত দেয়।
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(audioUri)) {
File audioFile = new File(new URI(audioUri.toString()));
int audioSize = (int) audioFile.length();
byte audioBytes = new byte[audioSize];
if (stream != null) {
stream.read(audioBytes, 0, audioBytes.length);
stream.close();
// Provide a prompt that includes the audio specified above and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "audio/mpeg") // Specify the appropriate audio MIME type
.addText("Transcribe what's said in this audio recording.")
.build();
// To stream generated text output, call `generateContentStream` with the prompt
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
StringBuilder fullResponse = new StringBuilder();
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
String text = (chunk == null) ? "" : chunk;
Log.d(TAG, text);
fullResponse.append(text);
}
@Override
public void onComplete() {
Log.d(TAG, fullResponse.toString());
}
@Override
public void onError(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
@Override
public void onSubscribe(Subscription s) {
}
});
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid audio file", e);
}
Web
টেক্সটের মাল্টিমোডাল ইনপুট এবং একটি একক অডিও ফাইল থেকে জেনারেট করা টেক্সট স্ট্রিম করতে আপনি generateContentStream()
কল করতে পারেন।
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(','));
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the audio
const prompt = "Transcribe what's said in this audio recording.";
// Prepare audio for input
const fileInputEl = document.querySelector("input[type=file]");
const audioPart = await fileToGenerativePart(fileInputEl.files);
// To stream generated text output, call `generateContentStream` with the text and audio
const result = await model.generateContentStream([prompt, audioPart]);
// Log the generated text
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
}
run();
Dart
টেক্সটের মাল্টিমোডাল ইনপুট এবং একটি একক অডিও ফাইল থেকে জেনারেট করা টেক্সট স্ট্রিম করতে আপনি generateContentStream()
কল করতে পারেন।
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the audio
final prompt = TextPart("Transcribe what's said in this audio recording.");
// Prepare audio for input
final audio = await File('audio0.mp3').readAsBytes();
// Provide the audio as `Data` with the appropriate audio MIME type
final audioPart = InlineDataPart('audio/mpeg', audio);
// To stream generated text output, call `generateContentStream` with the text and audio
final response = await model.generateContentStream([
Content.multi([prompt, audioPart])
]);
// Print the generated text
await for (final chunk in response) {
print(chunk.text);
}
ঐক্য
টেক্সটের মাল্টিমডাল ইনপুট এবং একটি একক অডিও ফাইল থেকে জেনারেট করা টেক্সট স্ট্রিম করতে আপনি GenerateContentStreamAsync()
কল করতে পারেন।
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a text prompt to include with the audio
var prompt = ModelContent.Text("Transcribe what's said in this audio recording.");
// Provide the audio as `data` with the appropriate audio MIME type
var audio = ModelContent.InlineData("audio/mpeg",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "audio0.mp3")));
// To stream generated text output, call `GenerateContentStreamAsync` with the text and audio
var responseStream = model.GenerateContentStreamAsync(new [] { prompt, audio });
// Print the generated text
await foreach (var response in responseStream) {
if (!string.IsNullOrWhiteSpace(response.Text)) {
UnityEngine.Debug.Log(response.Text);
}
}
ইনপুট অডিও ফাইলের জন্য প্রয়োজনীয়তা এবং সুপারিশ
মনে রাখবেন যে ইনলাইন ডেটা হিসাবে প্রদত্ত একটি ফাইল ট্রানজিটে বেস64 এ এনকোড করা হয়, যা অনুরোধের আকার বাড়ায়। একটি অনুরোধ খুব বড় হলে আপনি একটি HTTP 413 ত্রুটি পাবেন।
নিম্নলিখিত বিষয়ে বিস্তারিত তথ্য জানতে " Vertex AI Gemini API-এর জন্য সমর্থিত ইনপুট ফাইল এবং প্রয়োজনীয়তা" দেখুন:
- একটি অনুরোধে একটি ফাইল প্রদানের জন্য বিভিন্ন বিকল্প (হয় ইনলাইন বা ফাইলের URL বা URI ব্যবহার করে)
- অডিও ফাইলের জন্য প্রয়োজনীয়তা এবং সর্বোত্তম অনুশীলন
সমর্থিত অডিও MIME প্রকার
জেমিনি মাল্টিমোডাল মডেলগুলি নিম্নলিখিত অডিও MIME প্রকারগুলিকে সমর্থন করে:
অডিও MIME প্রকার | Gemini 2.0 Flash | Gemini 2.0 Flash-Lite |
---|---|---|
AAC - audio/aac | ||
FLAC - audio/flac | ||
MP3 - audio/mp3 | ||
MPA - audio/m4a | ||
MPEG - audio/mpeg | ||
MPGA - audio/mpga | ||
MP4 - audio/mp4 | ||
OPUS - audio/opus | ||
পিসিএম - audio/pcm | ||
WAV - audio/wav | ||
WEBM - audio/webm |
অনুরোধ প্রতি সীমা
আপনি একটি প্রম্পট অনুরোধে সর্বাধিকআপনি আর কি করতে পারেন?
- মডেলে দীর্ঘ প্রম্পট পাঠানোর আগে কীভাবে টোকেন গণনা করবেন তা শিখুন।
- Cloud Storage for Firebase সেট আপ করুন যাতে আপনি আপনার মাল্টিমোডাল অনুরোধগুলিতে বড় ফাইলগুলি অন্তর্ভুক্ত করতে পারেন এবং প্রম্পটে ফাইলগুলি সরবরাহ করার জন্য আরও পরিচালিত সমাধান পেতে পারেন৷ ফাইলগুলিতে ছবি, পিডিএফ, ভিডিও এবং অডিও অন্তর্ভুক্ত থাকতে পারে।
- উত্পাদনের জন্য প্রস্তুতির বিষয়ে চিন্তা করা শুরু করুন ( উৎপাদন চেকলিস্ট দেখুন), সহ:
- Gemini API কে অননুমোদিত ক্লায়েন্টদের অপব্যবহার থেকে রক্ষা করতে Firebase App Check সেট আপ করা হচ্ছে ।
- একটি নতুন অ্যাপ সংস্করণ প্রকাশ না করেই আপনার অ্যাপে (মডেলের নামের মতো) মান আপডেট করতে Firebase Remote Config একীভূত করা ।
অন্যান্য ক্ষমতা ব্যবহার করে দেখুন
- মাল্টি-টার্ন কথোপকথন তৈরি করুন (চ্যাট) ।
- শুধুমাত্র পাঠ্য প্রম্পট থেকে পাঠ্য তৈরি করুন।
- টেক্সট এবং মাল্টিমোডাল প্রম্পট উভয় থেকে কাঠামোগত আউটপুট (যেমন JSON) তৈরি করুন।
- টেক্সট প্রম্পট থেকে ছবি তৈরি করুন।
- বাহ্যিক সিস্টেম এবং তথ্যের সাথে জেনারেটিভ মডেল সংযোগ করতে ফাংশন কলিং ব্যবহার করুন।
বিষয়বস্তু তৈরি নিয়ন্ত্রণ কিভাবে শিখুন
- সর্বোত্তম অনুশীলন, কৌশল এবং উদাহরণ প্রম্পট সহ প্রম্পট ডিজাইন বুঝুন ।
- তাপমাত্রা এবং সর্বোচ্চ আউটপুট টোকেন ( মিথুনের জন্য) বা আকৃতির অনুপাত এবং ব্যক্তি তৈরির ( ইমেজেনের জন্য) মত মডেল প্যারামিটারগুলি কনফিগার করুন ।
- ক্ষতিকারক বলে বিবেচিত প্রতিক্রিয়া পাওয়ার সম্ভাবনা সামঞ্জস্য করতে নিরাপত্তা সেটিংস ব্যবহার করুন ।
সমর্থিত মডেল সম্পর্কে আরও জানুন
বিভিন্ন ব্যবহারের ক্ষেত্রে উপলব্ধ মডেল এবং তাদের কোটা এবং মূল্য সম্পর্কে জানুন।Firebase AI লজিকের সাথে আপনার অভিজ্ঞতা সম্পর্কে মতামত দিন