Sie können ein Gemini-Modell bitten, Audiodateien zu analysieren, die Sie entweder inline (base64-codiert) oder über eine URL bereitstellen. Wenn Sie Firebase AI Logic verwenden, können Sie diese Anfrage direkt über Ihre App stellen.
Mit dieser Funktion haben Sie folgende Möglichkeiten:
- Audioinhalte beschreiben, zusammenfassen oder Fragen dazu beantworten
- Audioinhalte transkribieren
- Bestimmte Audiosegmente mithilfe von Zeitstempeln analysieren
Zu Codebeispielen Zu Code für gestreamte Antworten
Weitere Informationen zu Optionen für die Arbeit mit Audio Strukturierte Ausgabe generieren Wechselseitiger Chat Zweiwege-Streaming |
Hinweis
Klicke auf deinen Gemini API-Anbieter, um dir anbieterspezifische Inhalte und Code auf dieser Seite anzusehen. |
Sehen Sie sich den Startleitfaden an, in dem beschrieben wird, wie Sie Ihr Firebase-Projekt einrichten, Ihre App mit Firebase verbinden, das SDK hinzufügen, den Backend-Dienst für den ausgewählten Gemini API-Anbieter initialisieren und eine GenerativeModel
-Instanz erstellen.
Zum Testen und Iterieren Ihrer Prompts und zum Generieren eines Code-Snippets empfehlen wir die Verwendung von Google AI Studio.
Text aus Audiodateien (Base64-codiert) generieren
Bevor Sie dieses Beispiel ausprobieren, müssen Sie den Abschnitt Vorbereitung in diesem Leitfaden durcharbeiten, um Ihr Projekt und Ihre App einzurichten. In diesem Abschnitt klicken Sie auch auf eine Schaltfläche für den von Ihnen ausgewählten Gemini API Anbieter, damit auf dieser Seite anbieterspezifische Inhalte angezeigt werden. |
Sie können ein Gemini-Modell bitten, Text zu generieren, indem Sie Text und Audio als Prompts angeben. Geben Sie dazu die mimeType
der Eingabedatei und die Datei selbst an. Anforderungen und Empfehlungen für Eingabedateien finden Sie weiter unten auf dieser Seite.
Swift
Sie können generateContent()
aufrufen, um Text aus einer multimodalen Eingabe von Text und einer einzelnen Audiodatei zu generieren.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the audio as `Data`
guard let audioData = try? Data(contentsOf: audioURL) else {
print("Error loading audio data.")
return // Or handle the error appropriately
}
// Specify the appropriate audio MIME type
let audio = InlineDataPart(data: audioData, mimeType: "audio/mpeg")
// Provide a text prompt to include with the audio
let prompt = "Transcribe what's said in this audio recording."
// To generate text output, call `generateContent` with the audio and text prompt
let response = try await model.generateContent(audio, prompt)
// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")
Kotlin
Sie können generateContent()
aufrufen, um Text aus einer multimodalen Eingabe von Text und einer einzelnen Audiodatei zu generieren.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
val inputStream = contentResolver.openInputStream(audioUri)
if (inputStream != null) { // Check if the audio loaded successfully
inputStream.use { stream ->
val bytes = stream.readBytes()
// Provide a prompt that includes the audio specified above and text
val prompt = content {
inlineData(bytes, "audio/mpeg") // Specify the appropriate audio MIME type
text("Transcribe what's said in this audio recording.")
}
// To generate text output, call `generateContent` with the prompt
val response = generativeModel.generateContent(prompt)
// Log the generated text, handling the case where it might be null
Log.d(TAG, response.text?: "")
}
} else {
Log.e(TAG, "Error getting input stream for audio.")
// Handle the error appropriately
}
Java
Sie können generateContent()
aufrufen, um Text aus einer multimodalen Eingabe von Text und einer einzelnen Audiodatei zu generieren.
ListenableFuture
zurück.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(audioUri)) {
File audioFile = new File(new URI(audioUri.toString()));
int audioSize = (int) audioFile.length();
byte audioBytes = new byte[audioSize];
if (stream != null) {
stream.read(audioBytes, 0, audioBytes.length);
stream.close();
// Provide a prompt that includes the audio specified above and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "audio/mpeg") // Specify the appropriate audio MIME type
.addText("Transcribe what's said in this audio recording.")
.build();
// To generate text output, call `generateContent` with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String text = result.getText();
Log.d(TAG, (text == null) ? "" : text);
}
@Override
public void onFailure(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
}, executor);
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid audio file", e);
}
Web
Sie können generateContent()
aufrufen, um Text aus einer multimodalen Eingabe von Text und einer einzelnen Audiodatei zu generieren.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(','));
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the audio
const prompt = "Transcribe what's said in this audio recording.";
// Prepare audio for input
const fileInputEl = document.querySelector("input[type=file]");
const audioPart = await fileToGenerativePart(fileInputEl.files);
// To generate text output, call `generateContent` with the text and audio
const result = await model.generateContent([prompt, audioPart]);
// Log the generated text, handling the case where it might be undefined
console.log(result.response.text() ?? "No text in response.");
}
run();
Dart
Sie können generateContent()
aufrufen, um Text aus einer multimodalen Eingabe von Text und einer einzelnen Audiodatei zu generieren.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the audio
final prompt = TextPart("Transcribe what's said in this audio recording.");
// Prepare audio for input
final audio = await File('audio0.mp3').readAsBytes();
// Provide the audio as `Data` with the appropriate audio MIME type
final audioPart = InlineDataPart('audio/mpeg', audio);
// To generate text output, call `generateContent` with the text and audio
final response = await model.generateContent([
Content.multi([prompt,audioPart])
]);
// Print the generated text
print(response.text);
Einheit
Sie können GenerateContentAsync()
aufrufen, um Text aus einer multimodalen Eingabe von Text und einer einzelnen Audiodatei zu generieren.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a text prompt to include with the audio
var prompt = ModelContent.Text("Transcribe what's said in this audio recording.");
// Provide the audio as `data` with the appropriate audio MIME type
var audio = ModelContent.InlineData("audio/mpeg",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "audio0.mp3")));
// To generate text output, call `GenerateContentAsync` with the text and audio
var response = await model.GenerateContentAsync(new [] { prompt, audio });
// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Weitere Informationen zur Auswahl eines Modells
Antwort streamen
Bevor Sie dieses Beispiel ausprobieren, müssen Sie den Abschnitt Vorbereitung in diesem Leitfaden durcharbeiten, um Ihr Projekt und Ihre App einzurichten. In diesem Abschnitt klicken Sie auch auf eine Schaltfläche für den von Ihnen ausgewählten Gemini API Anbieter, damit auf dieser Seite anbieterspezifische Inhalte angezeigt werden. |
Sie können schnellere Interaktionen erzielen, wenn Sie nicht auf das vollständige Ergebnis der Modellgenerierung warten, sondern stattdessen Streaming zum Verarbeiten von Teilergebnissen verwenden.
Wenn Sie die Antwort streamen möchten, rufen Sie generateContentStream
auf.
Anforderungen und Empfehlungen für Eingabe-Audiodateien
Hinweis: Eine als Inline-Daten bereitgestellte Datei wird während der Übertragung in Base64 codiert, was die Größe der Anfrage erhöht. Wenn eine Anfrage zu groß ist, erhalten Sie den HTTP-Fehler 413.
Unter „Unterstützte Eingabedateien und Anforderungen für die Vertex AI Gemini API“ finden Sie ausführliche Informationen zu folgenden Themen:
- Verschiedene Optionen zum Bereitstellen einer Datei in einer Anfrage (entweder inline oder mit der URL oder dem URI der Datei)
- Anforderungen und Best Practices für Audiodateien
Unterstützte MIME-Typen für Audioinhalte
Gemini-Multimodal-Modelle unterstützen die folgenden MIME-Audiotypen:
Audio-MIME-Typ | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
AAC - audio/aac |
||
FLAC - audio/flac |
||
MP3 - audio/mp3 |
||
MPA - audio/m4a |
||
MPEG - audio/mpeg |
||
MPGA - audio/mpga |
||
MP4 - audio/mp4 |
||
OPUS - audio/opus |
||
PCM - audio/pcm |
||
WAV - audio/wav |
||
WEBM - audio/webm |
Limits pro Anfrage
Sie können in einer Promptanfrage maximal
Was können Sie sonst noch tun?
- Informationen zum Zählen von Tokens, bevor lange Prompts an das Modell gesendet werden
- Richten Sie Cloud Storage for Firebase ein, damit Sie große Dateien in Ihre multimodalen Anfragen aufnehmen und eine besser verwaltete Lösung für die Bereitstellung von Dateien in Prompts haben können. Dateien können Bilder, PDFs, Videos und Audiodateien enthalten.
-
Überlegen Sie, wie Sie sich auf die Produktion vorbereiten können (siehe Checkliste für die Produktion). Dazu gehören:
- Firebase App Check einrichten, um die Gemini API vor Missbrauch durch nicht autorisierte Clients zu schützen.
- Firebase Remote Config einbinden, um Werte in Ihrer App (z. B. den Modellnamen) zu aktualisieren, ohne eine neue App-Version zu veröffentlichen.
Weitere Funktionen ausprobieren
- Unterhaltungen in mehreren Runden (Chat) erstellen
- Text aus nur Text-Prompts generieren
- Sie können sowohl aus Text- als auch aus multimodalen Prompts strukturierte Ausgabe (z. B. JSON) generieren.
- Bilder aus Text-Prompts generieren
- Verwenden Sie Funktionsaufrufe, um generative Modelle mit externen Systemen und Informationen zu verbinden.
Inhaltserstellung steuern
- Informationen zum Prompt-Design, einschließlich Best Practices, Strategien und Beispiel-Prompts.
- Konfigurieren Sie Modellparameter wie Temperatur und maximale Ausgabetokens (für Gemini) oder Seitenverhältnis und Personengenerierung (für Imagen).
- Mit den Sicherheitseinstellungen können Sie die Wahrscheinlichkeit anpassen, dass Sie Antworten erhalten, die als schädlich eingestuft werden könnten.
Weitere Informationen zu den unterstützten Modellen
Hier finden Sie Informationen zu den Modellen, die für verschiedene Anwendungsfälle verfügbar sind, sowie zu ihren Kontingenten und Preisen.Feedback zu Firebase AI Logic geben