ניתוח קובצי אודיו באמצעות ה-API של Gemini

אפשר לבקש ממודל Gemini לנתח קובצי אודיו שאתם מספקים בתוך שורה (בקידוד base64) או דרך כתובת URL. כשמשתמשים ב-Firebase AI Logic, אפשר לשלוח את הבקשה הזו ישירות מהאפליקציה.

בעזרת היכולת הזו תוכלו לבצע פעולות כמו:

  • לתאר, לסכם או לענות על שאלות לגבי תוכן אודיו
  • תמלול תוכן אודיו
  • ניתוח קטעים ספציפיים של אודיו באמצעות חותמות זמן

מעבר לדוגמאות הקוד מעבר לקוד של תגובות בסטרימינג


אפשר לעיין במדריכים נוספים כדי לקבל אפשרויות נוספות לעבודה עם אודיו
יצירת פלט מובנה צ'אט עם כמה תשובות שידור דו-כיווני

לפני שמתחילים

לוחצים על ספק Gemini API כדי להציג בדף הזה תוכן וקוד ספציפיים לספק.

אם עדיין לא עשיתם זאת, כדאי לעיין במדריך למתחילים, שבו מוסבר איך מגדירים את פרויקט Firebase, מחברים את האפליקציה ל-Firebase, מוסיפים את ה-SDK, מאתחלים את שירות הקצה העורפי של ספק Gemini API שבחרתם ויוצרים מכונה של GenerativeModel.

כדי לבדוק את ההנחיות ולבצע בהן שינויים, ואפילו לקבל קטע קוד שנוצר, מומלץ להשתמש ב-Google AI Studio.

יצירת טקסט מקובצי אודיו (בקידוד base64)

לפני שמנסים את הדוגמה הזו, צריך להשלים את הקטע לפני שמתחילים במדריך הזה כדי להגדיר את הפרויקט והאפליקציה.
בקטע הזה צריך גם ללחוץ על הלחצן של ספק ה-Gemini API שבחרתם כדי להציג תוכן ספציפי לספק בדף הזה.

אפשר לבקש ממודל Gemini ליצור טקסט על ידי הצגת הנחיה עם טקסט ואודיו – ולספק את mimeType של קובץ הקלט ואת הקובץ עצמו. בהמשך הדף מפורטות הדרישות וההמלצות לקובצי קלט.

Swift

אפשר להפעיל את הפונקציה generateContent() כדי ליצור טקסט מקלט מולטימודלי של טקסט וקובץ אודיו יחיד.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the audio as `Data`
guard let audioData = try? Data(contentsOf: audioURL) else {
    print("Error loading audio data.")
    return // Or handle the error appropriately
}

// Specify the appropriate audio MIME type
let audio = InlineDataPart(data: audioData, mimeType: "audio/mpeg")


// Provide a text prompt to include with the audio
let prompt = "Transcribe what's said in this audio recording."

// To generate text output, call `generateContent` with the audio and text prompt
let response = try await model.generateContent(audio, prompt)

// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")

Kotlin

אפשר להפעיל את הפונקציה generateContent() כדי ליצור טקסט מקלט מולטימודלי של טקסט וקובץ אודיו יחיד.

ב-Kotlin, השיטות ב-SDK הזה הן פונקציות השהיה (suspend) וצריך לקרוא להן מהיקף של פונקציית אירוע (coroutine).

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver

val inputStream = contentResolver.openInputStream(audioUri)

if (inputStream != null) {  // Check if the audio loaded successfully
    inputStream.use { stream ->
        val bytes = stream.readBytes()

        // Provide a prompt that includes the audio specified above and text
        val prompt = content {
            inlineData(bytes, "audio/mpeg")  // Specify the appropriate audio MIME type
            text("Transcribe what's said in this audio recording.")
        }

        // To generate text output, call `generateContent` with the prompt
        val response = generativeModel.generateContent(prompt)

        // Log the generated text, handling the case where it might be null
        Log.d(TAG, response.text?: "")
    }
} else {
    Log.e(TAG, "Error getting input stream for audio.")
    // Handle the error appropriately
}

Java

אפשר להפעיל את הפונקציה generateContent() כדי ליצור טקסט מקלט מולטימודלי של טקסט וקובץ אודיו יחיד.

ב-Java, השיטות ב-SDK הזה מחזירות ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();

try (InputStream stream = resolver.openInputStream(audioUri)) {
    File audioFile = new File(new URI(audioUri.toString()));
    int audioSize = (int) audioFile.length();
    byte audioBytes = new byte[audioSize];
    if (stream != null) {
        stream.read(audioBytes, 0, audioBytes.length);
        stream.close();

        // Provide a prompt that includes the audio specified above and text
        Content prompt = new Content.Builder()
              .addInlineData(audioBytes, "audio/mpeg")  // Specify the appropriate audio MIME type
              .addText("Transcribe what's said in this audio recording.")
              .build();

        // To generate text output, call `generateContent` with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String text = result.getText();
                Log.d(TAG, (text == null) ? "" : text);
            }
            @Override
            public void onFailure(Throwable t) {
                Log.e(TAG, "Failed to generate a response", t);
            }
        }, executor);
    } else {
        Log.e(TAG, "Error getting input stream for file.");
        // Handle the error appropriately
    }
} catch (IOException e) {
    Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
    Log.e(TAG, "Invalid audio file", e);
}

Web

אפשר להפעיל את הפונקציה generateContent() כדי ליצור טקסט מקלט מולטימודלי של טקסט וקובץ אודיו יחיד.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(','));
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the audio
  const prompt = "Transcribe what's said in this audio recording.";

  // Prepare audio for input
  const fileInputEl = document.querySelector("input[type=file]");
  const audioPart = await fileToGenerativePart(fileInputEl.files);

  // To generate text output, call `generateContent` with the text and audio
  const result = await model.generateContent([prompt, audioPart]);

  // Log the generated text, handling the case where it might be undefined
  console.log(result.response.text() ?? "No text in response.");
}

run();

Dart

אפשר להפעיל את הפונקציה generateContent() כדי ליצור טקסט מקלט מולטימודלי של טקסט וקובץ אודיו יחיד.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the audio
final prompt = TextPart("Transcribe what's said in this audio recording.");

// Prepare audio for input
final audio = await File('audio0.mp3').readAsBytes();

// Provide the audio as `Data` with the appropriate audio MIME type
final audioPart = InlineDataPart('audio/mpeg', audio);

// To generate text output, call `generateContent` with the text and audio
final response = await model.generateContent([
  Content.multi([prompt,audioPart])
]);

// Print the generated text
print(response.text);

Unity

אפשר להפעיל את הפונקציה GenerateContentAsync() כדי ליצור טקסט מקלט מולטימודלי של טקסט וקובץ אודיו יחיד.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a text prompt to include with the audio
var prompt = ModelContent.Text("Transcribe what's said in this audio recording.");

// Provide the audio as `data` with the appropriate audio MIME type
var audio = ModelContent.InlineData("audio/mpeg",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
        UnityEngine.Application.streamingAssetsPath, "audio0.mp3")));

// To generate text output, call `GenerateContentAsync` with the text and audio
var response = await model.GenerateContentAsync(new [] { prompt, audio });

// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

איך בוחרים מודל שמתאים לתרחיש לדוגמה ולסוג האפליקציה שלכם

שידור התשובה

לפני שמנסים את הדוגמה הזו, צריך להשלים את הקטע לפני שמתחילים במדריך הזה כדי להגדיר את הפרויקט והאפליקציה.
בקטע הזה צריך גם ללחוץ על הלחצן של ספק ה-Gemini API שבחרתם כדי להציג תוכן ספציפי לספק בדף הזה.

כדי לקבל אינטראקציות מהירות יותר, אפשר לא להמתין לתוצאה המלאה של יצירת המודל, אלא להשתמש בסטרימינג כדי לטפל בתוצאות חלקיות. כדי להעביר את התשובה בסטרימינג, קוראים ל-generateContentStream.



דרישות והמלצות לגבי קובצי אודיו להזנה

חשוב לזכור שקובץ שסופק כנתונים בתוך שורה מקודד ל-base64 במהלך ההעברה, וכתוצאה מכך גדל גודל הבקשה. אם בקשה גדולה מדי, תקבלו את השגיאה HTTP 413.

במאמר 'קבצי קלט נתמכים ודרישות ל-Vertex AI Gemini API' מפורט מידע על הנושאים הבאים:

סוגי MIME נתמכים של אודיו

Gemini מודלים רב-מודאליים תומכים בסוגי ה-MIME הבאים של אודיו:

סוג MIME של אודיו Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
AAC – audio/aac
FLAC – audio/flac
MP3 – audio/mp3
MPA - audio/m4a
MPEG - audio/mpeg
MPGA - audio/mpga
MP4 – audio/mp4
OPUS – audio/opus
PCM – audio/pcm
WAV – audio/wav
WEBM – audio/webm

מגבלות לכל בקשה

אפשר לכלול עד קובץ אודיו אחד בבקשה להנחיה.



מה עוד אפשר לעשות?

לנסות יכולות אחרות

איך שולטים ביצירת תוכן

אפשר גם להתנסות בהנחיות ובהגדרות של מודלים, ואפילו ליצור קטע קוד באמצעות Google AI Studio.

מידע נוסף על המודלים הנתמכים

כאן תוכלו לקרוא מידע נוסף על המודלים הזמינים לתרחישי שימוש שונים, על המכסות ועל התמחור שלהם.


שליחת משוב על חוויית השימוש ב-Firebase AI Logic