יצירת תמונות באמצעות Gemini


אפשר לבקש ממודל Gemini ליצור תמונות ולערוך תמונות באמצעות הנחיות טקסט בלבד וגם הנחיות עם טקסט ותמונה. כשמשתמשים ב-Firebase AI Logic, אפשר לשלוח את הבקשה הזו ישירות מהאפליקציה.

בעזרת היכולת הזו, תוכלו לבצע פעולות כמו:

  • יצירת תמונות באופן איטרטיבי באמצעות שיחה בשפה טבעית, תוך התאמת התמונות תוך שמירה על עקביות והקשר.

  • יצירת תמונות עם רינדור טקסט באיכות גבוהה, כולל מחרוזות ארוכות של טקסט.

  • יצירת פלט שמשלב טקסט ותמונה. לדוגמה, פוסט בבלוג עם טקסט ותמונות בתורו אחד. בעבר, כדי לעשות זאת היה צריך לקשר כמה מודלים.

  • יצירת תמונות באמצעות הידע על העולם ויכולות ההסקה של Gemini.

בהמשך הדף מופיעה רשימה מלאה של היכולות והמודלים הנתמכים (יחד עם הנחיות לדוגמה).

כדי ליצור פלט של תמונות, צריך להשתמש במודל Geminigemini-2.0-flash-preview-image-generation ולכלול את responseModalities: ["TEXT", "IMAGE"] בתצורת המודל.

מעבר לקוד להמרת טקסט לתמונה מעבר לקוד להצגת טקסט ותמונות בתצוגה מקבילה

מעבר לקוד לעריכת תמונות מעבר לקוד לעריכת תמונות תוך חזרה על תהליך העריכה


אפשר לעיין במדריכים נוספים כדי לקבל אפשרויות נוספות לעבודה עם תמונות
ניתוח תמונות ניתוח תמונות במכשיר יצירת פלט מובנה

בחירה בין המודלים Gemini ו-Imagen

ערכות ה-SDK של Firebase AI Logic תומכות ביצירת תמונות באמצעות מודל Gemini או מודל Imagen. ברוב התרחישים לדוגמה, כדאי להתחיל עם Gemini ואז לבחור ב-Imagen למשימות מיוחדות שבהן איכות התמונה קריטית.

חשוב לזכור שערכות ה-SDK של Firebase AI Logic עדיין לא תומכות בהזנת תמונות (למשל לעריכה) באמצעות מודלים של Imagen. לכן, אם רוצים לעבוד עם תמונות קלט, אפשר להשתמש במודל Gemini במקום זאת.

בוחרים באפשרות Gemini כדי:

  • כדי להשתמש בידע ובחשיבה על העולם כדי ליצור תמונות רלוונטיות להקשר.
  • כדי לשלב בצורה חלקה טקסט ותמונות.
  • כדי להטמיע רכיבים חזותיים מדויקים ברצפי טקסט ארוכים.
  • כדי לערוך תמונות בצורה שיחה תוך שמירה על ההקשר.

בוחרים באפשרות Imagen כדי:

  • כדי לתת עדיפות לאיכות התמונה, לריאליזם חזותי, לפרטים אומנותיים או לסגנונות ספציפיים (למשל, אימפרסיוניזם או אנימה).
  • כדי לציין במפורש את יחס הגובה-רוחב או הפורמט של התמונות שנוצרות.

לפני שמתחילים

לוחצים על ספק Gemini API כדי להציג בדף הזה את התוכן והקוד הספציפיים לספק.

אם עדיין לא עשיתם זאת, כדאי לעיין במדריך למתחילים, שבו מוסבר איך מגדירים את פרויקט Firebase, מחברים את האפליקציה ל-Firebase, מוסיפים את ה-SDK, מאתחלים את שירות הקצה העורפי של ספק Gemini API שבחרתם ויוצרים מכונה של GenerativeModel.

כדי לבדוק את ההנחיות ולבצע בהן שינויים, ואפילו לקבל קטע קוד שנוצר, מומלץ להשתמש ב-Google AI Studio.

מודלים שתומכים ביכולת הזו

יש תמיכה בפלט תמונות מ-Gemini רק ב-gemini-2.0-flash-preview-image-generation (לא ב-gemini-2.0-flash).

שימו לב שערכות ה-SDK תומכות גם ביצירת תמונות באמצעות מודלים של Imagen.

יצירה ועריכה של תמונות

אתם יכולים ליצור ולערוך תמונות באמצעות מודל Gemini.

יצירת תמונות (קלט טקסט בלבד)

לפני שמנסים את הדוגמה הזו, צריך להשלים את הקטע לפני שמתחילים במדריך הזה כדי להגדיר את הפרויקט והאפליקציה.
בקטע הזה צריך גם ללחוץ על הלחצן של ספק ה-Gemini API שבחרתם כדי להציג תוכן ספציפי לספק בדף הזה.

אתם יכולים לבקש ממודל Gemini ליצור תמונות על ידי הוספת הנחיות בטקסט.

חשוב ליצור מכונה של GenerativeModel, לכלול את responseModalities: ["TEXT", "IMAGE"] בהגדרת המודל ולקרוא ל-generateContent.

Swift


import FirebaseAI

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [.text, .image])
)

// Provide a text prompt instructing the model to generate an image
let prompt = "Generate an image of the Eiffel tower with fireworks in the background."

// To generate an image, call `generateContent` with the text input
let response = try await model.generateContent(prompt)

// Handle the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
  fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
  fatalError("Failed to convert data to UIImage.")
}

Kotlin


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)

// Provide a text prompt instructing the model to generate an image
val prompt = "Generate an image of the Eiffel tower with fireworks in the background."

// To generate image output, call `generateContent` with the text input
val generatedImageAsBitmap = model.generateContent(prompt)
    // Handle the generated image
    .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }

Java


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
    "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    new GenerationConfig.Builder()
        .setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
        .build()
);

GenerativeModelFutures model = GenerativeModelFutures.from(ai);

// Provide a text prompt instructing the model to generate an image
Content prompt = new Content.Builder()
        .addText("Generate an image of the Eiffel Tower with fireworks in the background.")
        .build();

// To generate an image, call `generateContent` with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) { 
        // iterate over all the parts in the first candidate in the result object
        for (Part part : result.getCandidates().get(0).getContent().getParts()) {
            if (part instanceof ImagePart) {
                ImagePart imagePart = (ImagePart) part;
                // The returned image as a bitmap
                Bitmap generatedImageAsBitmap = imagePart.getImage();
                break;
            }
        }
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: {
    responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
  },
});

// Provide a text prompt instructing the model to generate an image
const prompt = 'Generate an image of the Eiffel Tower with fireworks in the background.';

// To generate an image, call `generateContent` with the text input
const result = model.generateContent(prompt);

// Handle the generated image
try {
  const inlineDataParts = result.response.inlineDataParts();
  if (inlineDataParts?.[0]) {
    const image = inlineDataParts[0].inlineData;
    console.log(image.mimeType, image.data);
  }
} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
  model: 'gemini-2.0-flash-preview-image-generation',
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);

// Provide a text prompt instructing the model to generate an image
final prompt = [Content.text('Generate an image of the Eiffel Tower with fireworks in the background.')];

// To generate an image, call `generateContent` with the text input
final response = await model.generateContent(prompt);
if (response.inlineDataParts.isNotEmpty) {
  final imageBytes = response.inlineDataParts[0].bytes;
  // Process the image
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

Unity


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: new GenerationConfig(
    responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);

// Provide a text prompt instructing the model to generate an image
var prompt = "Generate an image of the Eiffel Tower with fireworks in the background.";

// To generate an image, call `GenerateContentAsync` with the text input
var response = await model.GenerateContentAsync(prompt);

var text = response.Text;
if (!string.IsNullOrWhiteSpace(text)) {
  // Do something with the text
}

// Handle the generated image
var imageParts = response.Candidates.First().Content.Parts
                         .OfType<ModelContent.InlineDataPart>()
                         .Where(part => part.MimeType == "image/png");
foreach (var imagePart in imageParts) {
  // Load the Image into a Unity Texture2D object
  UnityEngine.Texture2D texture2D = new(2, 2);
  if (texture2D.LoadImage(imagePart.Data.ToArray())) {
    // Do something with the image
  }
}

איך בוחרים מודל שמתאים לתרחיש לדוגמה ולסוג האפליקציה שלכם

יצירת תוכן שמשלב תמונות וטקסט

לפני שמנסים את הדוגמה הזו, צריך להשלים את הקטע לפני שמתחילים במדריך הזה כדי להגדיר את הפרויקט והאפליקציה.
בקטע הזה צריך גם ללחוץ על הלחצן של ספק ה-Gemini API שבחרתם כדי להציג תוכן ספציפי לספק בדף הזה.

אפשר לבקש ממודל Gemini ליצור תמונות מוצלבות עם התשובות שלו בטקסט. לדוגמה, אפשר ליצור תמונות של כל שלב במתכון שנוצר, יחד עם ההוראות של השלב, בלי שתצטרכו לשלוח בקשות נפרדות למודל או למודלים שונים.

חשוב ליצור מכונה של GenerativeModel, לכלול את responseModalities: ["TEXT", "IMAGE"] בהגדרת המודל ולקרוא ל-generateContent.

Swift


import FirebaseAI

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [.text, .image])
)

// Provide a text prompt instructing the model to generate interleaved text and images
let prompt = """
Generate an illustrated recipe for a paella.
Create images to go alongside the text as you generate the recipe
"""

// To generate interleaved text and images, call `generateContent` with the text input
let response = try await model.generateContent(prompt)

// Handle the generated text and image
guard let candidate = response.candidates.first else {
  fatalError("No candidates in response.")
}
for part in candidate.content.parts {
  switch part {
  case let textPart as TextPart:
    // Do something with the generated text
    let text = textPart.text
  case let inlineDataPart as InlineDataPart:
    // Do something with the generated image
    guard let uiImage = UIImage(data: inlineDataPart.data) else {
      fatalError("Failed to convert data to UIImage.")
    }
  default:
    fatalError("Unsupported part type: \(part)")
  }
}

Kotlin


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)

// Provide a text prompt instructing the model to generate interleaved text and images
val prompt = """
    Generate an illustrated recipe for a paella.
    Create images to go alongside the text as you generate the recipe
    """.trimIndent()

// To generate interleaved text and images, call `generateContent` with the text input
val responseContent = model.generateContent(prompt).candidates.first().content

// The response will contain image and text parts interleaved
for (part in responseContent.parts) {
    when (part) {
        is ImagePart -> {
            // ImagePart as a bitmap
            val generatedImageAsBitmap: Bitmap? = part.asImageOrNull()
        }
        is TextPart -> {
            // Text content from the TextPart
            val text = part.text
        }
    }
}

Java


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
    "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    new GenerationConfig.Builder()
        .setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
        .build()
);

GenerativeModelFutures model = GenerativeModelFutures.from(ai);

// Provide a text prompt instructing the model to generate interleaved text and images
Content prompt = new Content.Builder()
        .addText("Generate an illustrated recipe for a paella.\n" +
                 "Create images to go alongside the text as you generate the recipe")
        .build();

// To generate interleaved text and images, call `generateContent` with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        Content responseContent = result.getCandidates().get(0).getContent();
        // The response will contain image and text parts interleaved
        for (Part part : responseContent.getParts()) {
            if (part instanceof ImagePart) {
                // ImagePart as a bitmap
                Bitmap generatedImageAsBitmap = ((ImagePart) part).getImage();
            } else if (part instanceof TextPart){
                // Text content from the TextPart
                String text = ((TextPart) part).getText();
            }
        }
    }

    @Override
    public void onFailure(Throwable t) {
        System.err.println(t);
    }
}, executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: {
    responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
  },
});

// Provide a text prompt instructing the model to generate interleaved text and images
const prompt = 'Generate an illustrated recipe for a paella.\n.' +
  'Create images to go alongside the text as you generate the recipe';

// To generate interleaved text and images, call `generateContent` with the text input
const result = await model.generateContent(prompt);

// Handle the generated text and image
try {
  const response = result.response;
  if (response.candidates?.[0].content?.parts) {
    for (const part of response.candidates?.[0].content?.parts) {
      if (part.text) {
        // Do something with the text
        console.log(part.text)
      }
      if (part.inlineData) {
        // Do something with the image
        const image = part.inlineData;
        console.log(image.mimeType, image.data);
      }
    }
  }

} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
  model: 'gemini-2.0-flash-preview-image-generation',
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);

// Provide a text prompt instructing the model to generate interleaved text and images
final prompt = [Content.text(
  'Generate an illustrated recipe for a paella\n ' +
  'Create images to go alongside the text as you generate the recipe'
)];

// To generate interleaved text and images, call `generateContent` with the text input
final response = await model.generateContent(prompt);

// Handle the generated text and image
final parts = response.candidates.firstOrNull?.content.parts
if (parts.isNotEmpty) {
  for (final part in parts) {
    if (part is TextPart) {
      // Do something with text part
      final text = part.text
    }
    if (part is InlineDataPart) {
      // Process image
      final imageBytes = part.bytes
    }
  }
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

Unity


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: new GenerationConfig(
    responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);

// Provide a text prompt instructing the model to generate interleaved text and images
var prompt = "Generate an illustrated recipe for a paella \n" +
  "Create images to go alongside the text as you generate the recipe";

// To generate interleaved text and images, call `GenerateContentAsync` with the text input
var response = await model.GenerateContentAsync(prompt);

// Handle the generated text and image
foreach (var part in response.Candidates.First().Content.Parts) {
  if (part is ModelContent.TextPart textPart) {
    if (!string.IsNullOrWhiteSpace(textPart.Text)) {
      // Do something with the text
    }
  } else if (part is ModelContent.InlineDataPart dataPart) {
    if (dataPart.MimeType == "image/png") {
      // Load the Image into a Unity Texture2D object
      UnityEngine.Texture2D texture2D = new(2, 2);
      if (texture2D.LoadImage(dataPart.Data.ToArray())) {
        // Do something with the image
      }
    }
  }
}

איך בוחרים מודל שמתאים לתרחיש לדוגמה ולסוג האפליקציה שלכם

עריכת תמונות (קלט של טקסט ותמונה)

לפני שמנסים את הדוגמה הזו, צריך להשלים את הקטע לפני שמתחילים במדריך הזה כדי להגדיר את הפרויקט והאפליקציה.
בקטע הזה צריך גם ללחוץ על הלחצן של ספק ה-Gemini API שבחרתם כדי להציג תוכן ספציפי לספק בדף הזה.

כדי לבקש ממודל Gemini לערוך תמונות, צריך להזין טקסט ותמונה אחת או יותר.

חשוב ליצור מכונה של GenerativeModel, לכלול את responseModalities: ["TEXT", "IMAGE"] בהגדרת המודל ולקרוא ל-generateContent.

Swift


import FirebaseAI

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [.text, .image])
)

// Provide an image for the model to edit
guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") }

// Provide a text prompt instructing the model to edit the image
let prompt = "Edit this image to make it look like a cartoon"

// To edit the image, call `generateContent` with the image and text input
let response = try await model.generateContent(image, prompt)

// Handle the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
  fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
  fatalError("Failed to convert data to UIImage.")
}

Kotlin


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)

// Provide an image for the model to edit
val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones)

// Provide a text prompt instructing the model to edit the image
val prompt = content {
    image(bitmap)
    text("Edit this image to make it look like a cartoon")
}

// To edit the image, call `generateContent` with the prompt (image and text input)
val generatedImageAsBitmap = model.generateContent(prompt)
    // Handle the generated text and image
    .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }

Java


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
    "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    new GenerationConfig.Builder()
        .setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
        .build()
);

GenerativeModelFutures model = GenerativeModelFutures.from(ai);

// Provide an image for the model to edit
Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones);

// Provide a text prompt instructing the model to edit the image
Content promptcontent = new Content.Builder()
        .addImage(bitmap)
        .addText("Edit this image to make it look like a cartoon")
        .build();

// To edit the image, call `generateContent` with the prompt (image and text input)
ListenableFuture<GenerateContentResponse> response = model.generateContent(promptcontent);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        // iterate over all the parts in the first candidate in the result object
        for (Part part : result.getCandidates().get(0).getContent().getParts()) {
            if (part instanceof ImagePart) {
                ImagePart imagePart = (ImagePart) part;
                Bitmap generatedImageAsBitmap = imagePart.getImage();
                break;
            }
        }
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: {
    responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
  },
});

// Prepare an image for the model to edit
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

// Provide a text prompt instructing the model to edit the image
const prompt = "Edit this image to make it look like a cartoon";

const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);

// To edit the image, call `generateContent` with the image and text input
const result = await model.generateContent([prompt, imagePart]);

// Handle the generated image
try {
  const inlineDataParts = result.response.inlineDataParts();
  if (inlineDataParts?.[0]) {
    const image = inlineDataParts[0].inlineData;
    console.log(image.mimeType, image.data);
  }
} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
  model: 'gemini-2.0-flash-preview-image-generation',
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);

// Prepare an image for the model to edit
final image = await File('scones.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);

// Provide a text prompt instructing the model to edit the image
final prompt = TextPart("Edit this image to make it look like a cartoon");

// To edit the image, call `generateContent` with the image and text input
final response = await model.generateContent([
  Content.multi([prompt,imagePart])
]);

// Handle the generated image
if (response.inlineDataParts.isNotEmpty) {
  final imageBytes = response.inlineDataParts[0].bytes;
  // Process the image
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

Unity


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: new GenerationConfig(
    responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);

// Prepare an image for the model to edit
var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine(
  UnityEngine.Application.streamingAssetsPath, "scones.jpg"));
var image = ModelContent.InlineData("image/jpeg", imageFile);

// Provide a text prompt instructing the model to edit the image
var prompt = ModelContent.Text("Edit this image to make it look like a cartoon.");

// To edit the image, call `GenerateContent` with the image and text input
var response = await model.GenerateContentAsync(new [] { prompt, image });

var text = response.Text;
if (!string.IsNullOrWhiteSpace(text)) {
  // Do something with the text
}

// Handle the generated image
var imageParts = response.Candidates.First().Content.Parts
                         .OfType<ModelContent.InlineDataPart>()
                         .Where(part => part.MimeType == "image/png");
foreach (var imagePart in imageParts) {
  // Load the Image into a Unity Texture2D object
  Texture2D texture2D = new Texture2D(2, 2);
  if (texture2D.LoadImage(imagePart.Data.ToArray())) {
    // Do something with the image
  }
}

איך בוחרים מודל שמתאים לתרחיש לדוגמה ולסוג האפליקציה שלכם

איך מבצעים חזרות על תמונות ועורכים אותן באמצעות שיחה עם זיכרון

לפני שמנסים את הדוגמה הזו, צריך להשלים את הקטע לפני שמתחילים במדריך הזה כדי להגדיר את הפרויקט והאפליקציה.
בקטע הזה צריך גם ללחוץ על הלחצן של ספק ה-Gemini API שבחרתם כדי להציג תוכן ספציפי לספק בדף הזה.

באמצעות צ'אט עם כמה סבבים, אפשר לבצע איטרציות עם מודל Gemini על התמונות שהוא יוצר או על התמונות שאתם מספקים.

חשוב ליצור מכונה של GenerativeModel, לכלול את responseModalities: ["TEXT", "IMAGE"] בהגדרת המודל ולקרוא ל-startChat() ול-sendMessage() כדי לשלוח הודעות של משתמשים חדשים.

Swift


import FirebaseAI

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [.text, .image])
)

// Initialize the chat
let chat = model.startChat()

guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") }

// Provide an initial text prompt instructing the model to edit the image
let prompt = "Edit this image to make it look like a cartoon"

// To generate an initial response, send a user message with the image and text prompt
let response = try await chat.sendMessage(image, prompt)

// Inspect the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
  fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
  fatalError("Failed to convert data to UIImage.")
}

// Follow up requests do not need to specify the image again
let followUpResponse = try await chat.sendMessage("But make it old-school line drawing style")

// Inspect the edited image after the follow up request
guard let followUpInlineDataPart = followUpResponse.inlineDataParts.first else {
  fatalError("No image data in response.")
}
guard let followUpUIImage = UIImage(data: followUpInlineDataPart.data) else {
  fatalError("Failed to convert data to UIImage.")
}

Kotlin


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
    modelName = "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)

// Provide an image for the model to edit
val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones)

// Create the initial prompt instructing the model to edit the image
val prompt = content {
    image(bitmap)
    text("Edit this image to make it look like a cartoon")
}

// Initialize the chat
val chat = model.startChat()

// To generate an initial response, send a user message with the image and text prompt
var response = chat.sendMessage(prompt)
// Inspect the returned image
var generatedImageAsBitmap = response
    .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }

// Follow up requests do not need to specify the image again
response = chat.sendMessage("But make it old-school line drawing style")
generatedImageAsBitmap = response
    .candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }

Java


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
    "gemini-2.0-flash-preview-image-generation",
    // Configure the model to respond with text and images
    new GenerationConfig.Builder()
        .setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
        .build()
);

GenerativeModelFutures model = GenerativeModelFutures.from(ai);

// Provide an image for the model to edit
Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones);

// Initialize the chat
ChatFutures chat = model.startChat();

// Create the initial prompt instructing the model to edit the image
Content prompt = new Content.Builder()
        .setRole("user")
        .addImage(bitmap)
        .addText("Edit this image to make it look like a cartoon")
        .build();

// To generate an initial response, send a user message with the image and text prompt
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(prompt);
// Extract the image from the initial response
ListenableFuture<@Nullable Bitmap> initialRequest = Futures.transform(response, result -> {
    for (Part part : result.getCandidates().get(0).getContent().getParts()) {
        if (part instanceof ImagePart) {
            ImagePart imagePart = (ImagePart) part;
            return imagePart.getImage();
        }
    }
    return null;
}, executor);

// Follow up requests do not need to specify the image again
ListenableFuture<GenerateContentResponse> modelResponseFuture = Futures.transformAsync(
        initialRequest,
        generatedImage -> {
            Content followUpPrompt = new Content.Builder()
                    .addText("But make it old-school line drawing style")
                    .build();
            return chat.sendMessage(followUpPrompt);
        },
        executor);

// Add a final callback to check the reworked image
Futures.addCallback(modelResponseFuture, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        for (Part part : result.getCandidates().get(0).getContent().getParts()) {
            if (part instanceof ImagePart) {
                ImagePart imagePart = (ImagePart) part;
                Bitmap generatedImageAsBitmap = imagePart.getImage();
                break;
            }
        }
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
  model: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: {
    responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
  },
});

// Prepare an image for the model to edit
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);

// Provide an initial text prompt instructing the model to edit the image
const prompt = "Edit this image to make it look like a cartoon";

// Initialize the chat
const chat = model.startChat();

// To generate an initial response, send a user message with the image and text prompt
const result = await chat.sendMessage([prompt, imagePart]);

// Request and inspect the generated image
try {
  const inlineDataParts = result.response.inlineDataParts();
  if (inlineDataParts?.[0]) {
    // Inspect the generated image
    const image = inlineDataParts[0].inlineData;
    console.log(image.mimeType, image.data);
  }
} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

// Follow up requests do not need to specify the image again
const followUpResult = await chat.sendMessage("But make it old-school line drawing style");

// Request and inspect the returned image
try {
  const followUpInlineDataParts = followUpResult.response.inlineDataParts();
  if (followUpInlineDataParts?.[0]) {
    // Inspect the generated image
    const followUpImage = followUpInlineDataParts[0].inlineData;
    console.log(followUpImage.mimeType, followUpImage.data);
  }
} catch (err) {
  console.error('Prompt or candidate was blocked:', err);
}

Dart


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
  model: 'gemini-2.0-flash-preview-image-generation',
  // Configure the model to respond with text and images
  generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);

// Prepare an image for the model to edit
final image = await File('scones.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);

// Provide an initial text prompt instructing the model to edit the image
final prompt = TextPart("Edit this image to make it look like a cartoon");

// Initialize the chat
final chat = model.startChat();

// To generate an initial response, send a user message with the image and text prompt
final response = await chat.sendMessage([
  Content.multi([prompt,imagePart])
]);

// Inspect the returned image
if (response.inlineDataParts.isNotEmpty) {
  final imageBytes = response.inlineDataParts[0].bytes;
  // Process the image
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

// Follow up requests do not need to specify the image again
final followUpResponse = await chat.sendMessage([
  Content.text("But make it old-school line drawing style")
]);

// Inspect the returned image
if (followUpResponse.inlineDataParts.isNotEmpty) {
  final followUpImageBytes = response.inlineDataParts[0].bytes;
  // Process the image
} else {
  // Handle the case where no images were generated
  print('Error: No images were generated.');
}

Unity


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
  modelName: "gemini-2.0-flash-preview-image-generation",
  // Configure the model to respond with text and images
  generationConfig: new GenerationConfig(
    responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);

// Prepare an image for the model to edit
var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine(
  UnityEngine.Application.streamingAssetsPath, "scones.jpg"));
var image = ModelContent.InlineData("image/jpeg", imageFile);

// Provide an initial text prompt instructing the model to edit the image
var prompt = ModelContent.Text("Edit this image to make it look like a cartoon.");

// Initialize the chat
var chat = model.StartChat();

// To generate an initial response, send a user message with the image and text prompt
var response = await chat.SendMessageAsync(new [] { prompt, image });

// Inspect the returned image
var imageParts = response.Candidates.First().Content.Parts
                         .OfType<ModelContent.InlineDataPart>()
                         .Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D texture2D = new(2, 2);
if (texture2D.LoadImage(imageParts.First().Data.ToArray())) {
  // Do something with the image
}

// Follow up requests do not need to specify the image again
var followUpResponse = await chat.SendMessageAsync("But make it old-school line drawing style");

// Inspect the returned image
var followUpImageParts = followUpResponse.Candidates.First().Content.Parts
                         .OfType<ModelContent.InlineDataPart>()
                         .Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D followUpTexture2D = new(2, 2);
if (followUpTexture2D.LoadImage(followUpImageParts.First().Data.ToArray())) {
  // Do something with the image
}

איך בוחרים מודל שמתאים לתרחיש לדוגמה ולסוג האפליקציה שלכם



תכונות נתמכות, מגבלות ושיטות מומלצות

היכולות והמודלים הנתמכים

אלה המאפיינים והיכולות הנתמכים של פלט תמונה ממודל Gemini. לכל יכולת מוצגת הנחיה לדוגמה, ומעליה קוד לדוגמה.

  • טקסט לתמונה (טקסט בלבד לתמונה)

    • יצירת תמונה של מגדל אייפל עם זיקוקים ברקע.
  • טקסט לתמונה (עיבוד טקסט)

    • יצירת תמונה קולנועית של בניין גדול עם הקרנת טקסט ענקית שממופה על חזית הבניין.
  • טקסט לתמונות וטקסט (מקובץ)

    • יצירת מתכון מאויר לפאייה. יוצרים תמונות לצד הטקסט בזמן יצירת המתכון.

    • יצירת סיפור על כלב בסגנון אנימציה של סרט מצויר בתלת ממד. יוצרים תמונה לכל סצנה.

  • תמונות וטקסט לתמונות וטקסט (משולבים)

    • [image of a furnished room] + איזה ספות בצבע אחר יתאימו למרחב שלי? יש לך אפשרות לעדכן את התמונה?
  • עריכת תמונות (טקסט ותמונה לתמונה)

    • [image of scones] + Edit this image to make it look like a cartoon

    • [image of a cat] + [image of a pillow] + Create a cross stitch of my cat on this pillow.

  • עריכת תמונות במספר שלבים (צ'אט)

    • [image of a blue car] + Turn this car into a convertible., then Now change the color to yellow.

מגבלות ושיטות מומלצות

בהמשך מפורטות המגבלות והשיטות המומלצות להפקת תמונות ממודל Gemini.

  • במהדורה הניסיונית הציבורית הזו, Gemini תומך באפשרויות הבאות:

    • יצירת תמונות PNG בגודל מקסימלי של 1,024 פיקסלים.
    • יצירה ועריכה של תמונות של אנשים.
    • שימוש במסנני בטיחות שמספקים חוויית משתמש גמישה ומעט פחות מגבילה.
  • כדי לשפר את הביצועים, מומלץ להשתמש בשפות הבאות: en, es-mx, ja-jp, zh-cn, hi-in.

  • יצירת תמונות לא תומכת בקלט של אודיו או וידאו.

  • יכול להיות שיצירת התמונות לא תופעל תמיד. ריכזנו כאן כמה בעיות ידועות:

    • המודל יכול להפיק פלט של טקסט בלבד.
      כדאי לנסות לבקש פלט של תמונות באופן מפורש (לדוגמה, 'יצירת תמונה', 'הוספת תמונות תוך כדי עבודה', 'עדכון התמונה').

    • יכול להיות שהמודל יפסיק ליצור תמונות באמצע התהליך.
      אפשר לנסות שוב או לנסות הנחיה אחרת.

    • המודל עשוי ליצור טקסט כתמונה.
      כדאי לנסות לבקש פלט טקסט באופן מפורש. לדוגמה, 'יצירת טקסט של סיפור עם איורים'.

  • כשאתם יוצרים טקסט לתמונה, Gemini פועל בצורה הטובה ביותר אם קודם יוצרים את הטקסט ואז מבקשים תמונה עם הטקסט.