Bir Gemini modelinden, satır içi (Base64 kodlu) veya URL üzerinden sağladığınız belge dosyalarını (ör. PDF'ler ve düz metin dosyaları) analiz etmesini isteyebilirsiniz. Firebase AI Logic'ü kullandığınızda bu isteği doğrudan uygulamanızdan gönderebilirsiniz.
Bu özellik sayesinde şunları yapabilirsiniz:
- Dokümanlar içindeki diyagramları, grafikleri ve tabloları analiz etme
- Bilgileri yapılandırılmış çıkış biçimlerine ayıklayın
- Dokümanlardaki görsel ve metin içerikleriyle ilgili soruları yanıtlama
- Dokümanları özetleme
- Akış uygulamaları (ör. RAG ardışık düzenlerinde) için kullanmak üzere doküman içeriğini (ör. HTML'ye) metne dönüştürme, düzenleri ve biçimlendirmeyi koruma
Kod örneklerine atlama Aktarılan yanıtlar için koda atlama
Belgelerle (ör. PDF'ler) çalışmayla ilgili ek seçenekler için diğer kılavuzlara bakın Yapılandırılmış çıkış oluşturma Çoklu turlu sohbet |
Başlamadan önce
Bu sayfada sağlayıcıya özgü içerikleri ve kodu görüntülemek için Gemini API sağlayıcınızı tıklayın. |
Henüz yapmadıysanız Firebase projenizi oluşturma, uygulamanızı Firebase'e bağlama, SDK'yı ekleme, seçtiğiniz Gemini API sağlayıcı için arka uç hizmetini başlatma ve GenerativeModel
örneği oluşturma hakkında bilgi veren başlangıç kılavuzunu tamamlayın.
İstemlerinizi test etmek ve üzerinde iterasyon yapmak, hatta oluşturulmuş bir kod snippet'i almak için Google AI Studio'i kullanmanızı öneririz.
PDF dosyalarından metin oluşturma (base64 kodlu)
Bu örneği denemeden önce, projenizi ve uygulamanızı oluşturmak için bu kılavuzun Başlamadan önce bölümünü tamamlayın. Bu sayfada sağlayıcıya özel içerikleri görmek için seçtiğiniz Gemini API sağlayıcının düğmesini de bu bölümde tıklayacaksınız. |
Bir Gemini modelinden metin ve PDF'lerle istemde bulunarak metin oluşturmasını isteyebilirsiniz. Bunun için her giriş dosyasının mimeType
değerini ve dosyayı sağlamanız gerekir. Giriş dosyaları ile ilgili koşulları ve önerileri bu sayfanın ilerleyen bölümlerinde bulabilirsiniz.
Swift
Metin ve PDF'lerden çok modlu girişten metin oluşturmak için generateContent()
işlevini çağırabilirsiniz.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the PDF as `Data` with the appropriate MIME type
let pdf = try InlineDataPart(data: Data(contentsOf: pdfURL), mimeType: "application/pdf")
// Provide a text prompt to include with the PDF file
let prompt = "Summarize the important results in this report."
// To generate text output, call `generateContent` with the PDF file and text prompt
let response = try await model.generateContent(pdf, prompt)
// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")
Kotlin
Metin ve PDF'lerden çok modlu girişten metin oluşturmak için generateContent()
işlevini çağırabilirsiniz.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
// Provide the URI for the PDF file you want to send to the model
val inputStream = contentResolver.openInputStream(pdfUri)
if (inputStream != null) { // Check if the PDF file loaded successfully
inputStream.use { stream ->
// Provide a prompt that includes the PDF file specified above and text
val prompt = content {
inlineData(
bytes = stream.readBytes(),
mimeType = "application/pdf" // Specify the appropriate PDF file MIME type
)
text("Summarize the important results in this report.")
}
// To generate text output, call `generateContent` with the prompt
val response = generativeModel.generateContent(prompt)
// Log the generated text, handling the case where it might be null
Log.d(TAG, response.text ?: "")
}
} else {
Log.e(TAG, "Error getting input stream for file.")
// Handle the error appropriately
}
Java
Metin ve PDF'lerden çok modlu girişten metin oluşturmak için generateContent()
işlevini çağırabilirsiniz.
ListenableFuture
döndürür.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
// Provide the URI for the PDF file you want to send to the model
try (InputStream stream = resolver.openInputStream(pdfUri)) {
if (stream != null) {
byte[] audioBytes = stream.readAllBytes();
stream.close();
// Provide a prompt that includes the PDF file specified above and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "application/pdf") // Specify the appropriate PDF file MIME type
.addText("Summarize the important results in this report.")
.build();
// To generate text output, call `generateContent` with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String text = result.getText();
Log.d(TAG, (text == null) ? "" : text);
}
@Override
public void onFailure(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
}, executor);
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the pdf file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid pdf file", e);
}
Web
Metin ve PDF'lerden çok modlu girişten metin oluşturmak için generateContent()
işlevini çağırabilirsiniz.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(','));
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the PDF file
const prompt = "Summarize the important results in this report.";
// Prepare PDF file for input
const fileInputEl = document.querySelector("input[type=file]");
const pdfPart = await fileToGenerativePart(fileInputEl.files);
// To generate text output, call `generateContent` with the text and PDF file
const result = await model.generateContent([prompt, pdfPart]);
// Log the generated text, handling the case where it might be undefined
console.log(result.response.text() ?? "No text in response.");
}
run();
Dart
Metin ve PDF'lerden çok modlu girişten metin oluşturmak için generateContent()
işlevini çağırabilirsiniz.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the PDF file
final prompt = TextPart("Summarize the important results in this report.");
// Prepare the PDF file for input
final doc = await File('document0.pdf').readAsBytes();
// Provide the PDF file as `Data` with the appropriate PDF file MIME type
final docPart = InlineDataPart('application/pdf', doc);
// To generate text output, call `generateContent` with the text and PDF file
final response = await model.generateContent([
Content.multi([prompt,docPart])
]);
// Print the generated text
print(response.text);
Unity
Metin ve PDF'lerden çok modlu girişten metin oluşturmak için generateContent()
işlevini çağırabilirsiniz.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a text prompt to include with the PDF file
var prompt = ModelContent.Text("Summarize the important results in this report.");
// Provide the PDF file as `data` with the appropriate PDF file MIME type
var doc = ModelContent.InlineData("application/pdf",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "document0.pdf")));
// To generate text output, call `GenerateContentAsync` with the text and PDF file
var response = await model.GenerateContentAsync(new [] { prompt, doc });
// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Kullanım alanınıza ve uygulamanıza uygun bir model nasıl seçeceğinizi öğrenin.
Yanıtı akış şeklinde gösterme
Bu örneği denemeden önce, projenizi ve uygulamanızı oluşturmak için bu kılavuzun Başlamadan önce bölümünü tamamlayın. Bu sayfada sağlayıcıya özel içerikleri görmek için seçtiğiniz Gemini API sağlayıcının düğmesini de bu bölümde tıklayacaksınız. |
Model oluşturma işleminin sonucunun tamamını beklemek yerine kısmi sonuçları işlemek için akış özelliğini kullanarak daha hızlı etkileşimler elde edebilirsiniz.
Yanıtı aktarmak için generateContentStream
numaralı telefonu arayın.
Giriş belgeleri için koşullar ve öneriler
Satır içi veri olarak sağlanan bir dosyanın aktarım sırasında base64 olarak kodlandığını ve bu durumun isteğin boyutunu artırdığını unutmayın. İstek çok büyükse HTTP 413 hatası alırsınız.
Aşağıdaki konularla ilgili ayrıntılı bilgi edinmek için "Vertex AI Gemini API için desteklenen giriş dosyaları ve gereksinimler" bölümüne bakın:
- İsteklerde dosya sağlamayla ilgili farklı seçenekler (satır içi veya dosyanın URL'si ya da URI'si kullanılarak)
- Belge dosyaları için şartlar ve en iyi uygulamalar
Desteklenen video MIME türleri
Gemini Çok modlu modeller aşağıdaki doküman MIME türlerini destekler:
Belge MIME türü | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
PDF - application/pdf |
||
Metin: text/plain |
İstek başına sınırlar
PDF'ler resim olarak değerlendirilir. Bu nedenle, PDF'nin tek bir sayfası tek bir resim olarak değerlendirilir. Bir istemde izin verilen sayfa sayısı, modelin destekleyebileceği resim sayısıyla sınırlıdır:
- Gemini 2.0 Flash ve Gemini 2.0 Flash‑Lite:
- İstek başına maksimum dosya sayısı: 3.000
- Dosya başına maksimum sayfa sayısı: 1.000
- Dosya başına maksimum boyut: 50 MB
Başka neler yapabilirsiniz?
- Modele uzun istemler göndermeden önce jetonları nasıl sayacağınızı öğrenin.
- Çok modlu isteklerinize büyük dosyalar ekleyebilmeniz ve istemlerde dosya sağlamak için daha yönetilebilir bir çözüme sahip olabilmeniz amacıyla Cloud Storage for Firebase'i ayarlayın. Dosyalar resim, PDF, video ve ses içerebilir.
-
Üretime hazırlanmaya başlayın (üretim yapılacaklar listesine bakın). Örneğin:
- Gemini API'ı yetkisiz istemciler tarafından kötüye kullanıma karşı korumak için Firebase App Check'yi ayarlama
- Yeni bir uygulama sürümü yayınlamadan uygulamanızdaki değerleri (ör. model adı) güncellemek için Firebase Remote Config entegrasyonu
Diğer özellikleri deneyin
- Çoklu katılımlı görüşmeler (sohbet) oluşturun.
- Yalnızca metin istemlerinden metin oluşturma
- Hem metin hem de çoklu modal istemlerden yapılandırılmış çıkış (JSON gibi) oluşturun.
- Metin istemlerinden resim oluşturma
- Üretken modelleri harici sistemlere ve bilgilere bağlamak için işlev çağırma özelliğini kullanın.
İçerik oluşturmayı nasıl kontrol edeceğinizi öğrenin
- En iyi uygulamalar, stratejiler ve örnek istemler dahil olmak üzere istem tasarımını anlama
- Sıcaklık ve maksimum çıkış jetonu (Gemini için) ya da en boy oranı ve kişi oluşturma (Imagen için) gibi model parametrelerini yapılandırın.
- Zararlı olarak değerlendirilebilecek yanıtlar alma olasılığını ayarlamak için güvenlik ayarlarını kullanın.
Desteklenen modeller hakkında daha fazla bilgi
Çeşitli kullanım alanları için kullanılabilen modeller, bunların kotaları ve fiyatlandırması hakkında bilgi edinin.Firebase AI Logic ile ilgili deneyiminiz hakkında geri bildirim verme