Gemini API'yi kullanarak çoklu katılımlı sohbetler (sohbet) oluşturma

Gemini API simgesini kullanarak birden fazla katılımcının yer aldığı serbest biçimli sohbetler oluşturabilirsiniz. Firebase AI Logic SDK'sı, sohbetin durumunu yöneterek süreci basitleştirir. Bu nedenle, generateContent() (veya generateContentStream()) ile karşılaştırıldığında sohbet geçmişini kendiniz saklamanıza gerek yoktur.

Başlamadan önce

Bu sayfada sağlayıcıya özgü içerikleri ve kodu görüntülemek için Gemini API sağlayıcınızı tıklayın.

Henüz yapmadıysanız Firebase projenizi oluşturma, uygulamanızı Firebase'e bağlama, SDK'yı ekleme, seçtiğiniz Gemini API sağlayıcı için arka uç hizmetini başlatma ve GenerativeModel örneği oluşturma hakkında bilgi veren başlangıç kılavuzunu tamamlayın.

İstemlerinizi test etmek ve üzerinde iterasyon yapmak, hatta oluşturulmuş bir kod snippet'i almak için Google AI Studio'i kullanmanızı öneririz.

Sohbet istemi isteği gönderme

Bu örneği denemeden önce, projenizi ve uygulamanızı oluşturmak için bu kılavuzun Başlamadan önce bölümünü tamamlayın.
Bu sayfada sağlayıcıya özel içerikleri görmek için seçtiğiniz Gemini API sağlayıcının düğmesini de bu bölümde tıklayacaksınız.

Çok turlu bir görüşme (sohbet gibi) oluşturmak için startChat() işlevini çağırarak sohbeti başlatın. Ardından, yeni bir kullanıcı mesajı göndermek için sendMessage() simgesini kullanın. Bu işlem, mesajı ve yanıtı sohbet geçmişine de ekler.

Sohbetteki içerikle ilişkili role için iki olası seçenek vardır:

  • user: İstemleri sağlayan rol. Bu değer, sendMessage() çağrıları için varsayılan değerdir ve farklı bir rol iletilirse işlev bir istisna oluşturur.

  • model: Yanıtları sağlayan rol. Bu rol, mevcut history ile startChat()'ü çağırırken kullanılabilir.

Swift

Yeni kullanıcı mesajı göndermek için startChat() ve sendMessage() numaralarını arayabilirsiniz:


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = model.startChat(history: history)

// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
print(response.text ?? "No text in response.")

Kotlin

Yeni kullanıcı mesajı göndermek için startChat() ve sendMessage() numaralarını arayabilirsiniz:

Kotlin için bu SDK'daki yöntemler askıya alma işlevleridir ve Komut dizisi kapsamında çağrılmaları gerekir.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


// Initialize the chat
val chat = generativeModel.startChat(
  history = listOf(
    content(role = "user") { text("Hello, I have 2 dogs in my house.") },
    content(role = "model") { text("Great to meet you. What would you like to know?") }
  )
)

val response = chat.sendMessage("How many paws are in my house?")
print(response.text)

Java

Yeni kullanıcı mesajı göndermek için startChat() ve sendMessage() numaralarını arayabilirsiniz:

Java için bu SDK'daki yöntemler ListenableFuture döndürür.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");

Content message = messageBuilder.build();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web

Yeni kullanıcı mesajı göndermek için startChat() ve sendMessage() numaralarını arayabilirsiniz:


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


async function run() {
  const chat = model.startChat({
    history: [
      {
        role: "user",
        parts: [{ text: "Hello, I have 2 dogs in my house." }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
    generationConfig: {
      maxOutputTokens: 100,
    },
  });

  const msg = "How many paws are in my house?";

  const result = await chat.sendMessage(msg);

  const response = await result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

Yeni kullanıcı mesajı göndermek için startChat() ve sendMessage() numaralarını arayabilirsiniz:


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


final chat = model.startChat();
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

final response = await chat.sendMessage(prompt);
print(response.text);

Unity

Yeni kullanıcı mesajı göndermek için startChat() ve sendMessage() numaralarını arayabilirsiniz:


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Optionally specify existing chat history
var history = new [] {
  ModelContent.Text("Hello, I have 2 dogs in my house."),
  new ModelContent("model", new ModelContent.TextPart("Great to meet you. What would you like to know?")),
};

// Initialize the chat with optional chat history
var chat = model.StartChat(history);

// To generate text output, call SendMessageAsync and pass in the message
var response = await chat.SendMessageAsync("How many paws are in my house?");
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Kullanım alanınıza ve uygulamanıza uygun bir model nasıl seçeceğinizi öğrenin.

Yanıtı akış şeklinde gösterme

Bu örneği denemeden önce, projenizi ve uygulamanızı oluşturmak için bu kılavuzun Başlamadan önce bölümünü tamamlayın.
Bu sayfada sağlayıcıya özel içerikleri görmek için seçtiğiniz Gemini API sağlayıcının düğmesini de bu bölümde tıklayacaksınız.

Model oluşturma işleminin sonucunun tamamını beklemek yerine kısmi sonuçları işlemek için akış özelliğini kullanarak daha hızlı etkileşimler elde edebilirsiniz. Yanıtı aktarmak için sendMessageStream() numaralı telefonu arayın.



Başka neler yapabilirsiniz?

Diğer özellikleri deneyin

İçerik oluşturmayı nasıl kontrol edeceğinizi öğrenin

İstemler ve model yapılandırmalarıyla denemeler yapabilir, hatta Google AI Studio kullanarak oluşturulmuş bir kod snippet'i alabilirsiniz.

Desteklenen modeller hakkında daha fazla bilgi

Çeşitli kullanım alanları için kullanılabilen modeller, bunların kotaları ve fiyatlandırması hakkında bilgi edinin.


Firebase AI Logic ile ilgili deneyiminiz hakkında geri bildirim verme