با استفاده از Gemini API متن تولید کنید

می‌توانید از یک مدل Gemini بخواهید متنی را از یک اعلان متنی یا چند وجهی تولید کند. وقتی از Firebase AI Logic استفاده می‌کنید، می‌توانید این درخواست را مستقیماً از برنامه خود ارسال کنید.

اعلان‌های چندوجهی می‌توانند شامل چندین نوع ورودی (مانند متن همراه با تصاویر، فایل‌های PDF، فایل‌های متن ساده، صدا و ویدئو) باشند.

این راهنما نشان می‌دهد که چگونه می‌توان متن را از یک اعلان متنی و از یک فرمان چندوجهی اولیه که شامل یک فایل است، تولید کرد.

پرش به نمونه کد برای ورودی فقط متنی پرش به نمونه کد برای ورودی چندوجهی


راهنماهای دیگر را برای گزینه های اضافی برای کار با متن ببینید
تولید خروجی ساختاریافته چت چند نوبتی جریان دو طرفه تولید متن روی دستگاه تولید تصاویر از متن

قبل از شروع

برای مشاهده محتوا و کد ارائه دهنده خاص در این صفحه، روی ارائه دهنده API Gemini خود کلیک کنید.

اگر قبلاً این کار را نکرده‌اید، راهنمای شروع را کامل کنید، که نحوه راه‌اندازی پروژه Firebase را توضیح می‌دهد، برنامه خود را به Firebase متصل کنید، SDK را اضافه کنید، سرویس Backend را برای ارائه‌دهنده API Gemini انتخابی خود مقداردهی کنید و یک نمونه GenerativeModel ایجاد کنید.

برای آزمایش و تکرار در درخواست‌های خود و حتی دریافت یک قطعه کد تولید شده، توصیه می‌کنیم از Google AI Studio استفاده کنید.

متن را از ورودی فقط متنی تولید کنید

قبل از امتحان این نمونه، بخش قبل از شروع این راهنما را تکمیل کنید تا پروژه و برنامه خود را راه اندازی کنید.
در آن بخش، همچنین روی دکمه ای برای ارائه دهنده API Gemini انتخابی خود کلیک می کنید تا محتوای خاص ارائه دهنده را در این صفحه ببینید .

می‌توانید از یک مدل Gemini بخواهید که متن را با درخواست با ورودی فقط متن تولید کند.

سویفت

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."

// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")

Kotlin

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.

برای Kotlin، روش‌های موجود در این SDK توابع تعلیق هستند و باید از یک محدوده Coroutine فراخوانی شوند.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."

// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)

Java

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.

برای جاوا، روش‌های موجود در این SDK یک ListenableFuture برمی‌گردانند.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


// Provide a prompt that contains text
Content prompt = new Content.Builder()
    .addText("Write a story about a magic backpack.")
    .build();

// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Wrap in an async function so you can use await
async function run() {
  // Provide a prompt that contains text
  const prompt = "Write a story about a magic backpack."

  // To generate text output, call generateContent with the text input
  const result = await model.generateContent(prompt);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);

وحدت

می توانید برای تولید متن از ورودی متنی GenerateContentAsync() فراخوانی کنید.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";

// To generate text output, call GenerateContentAsync with the text input
var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

متن را از ورودی متن و فایل (چند وجهی) تولید کنید

قبل از امتحان این نمونه، بخش قبل از شروع این راهنما را تکمیل کنید تا پروژه و برنامه خود را راه اندازی کنید.
در آن بخش، همچنین روی دکمه ای برای ارائه دهنده API Gemini انتخابی خود کلیک می کنید تا محتوای خاص ارائه دهنده را در این صفحه ببینید .

می‌توانید از یک مدل Gemini بخواهید که متنی را با درخواست متن و یک فایل تولید کند—با ارائه mimeType هر فایل ورودی و خود فایل. الزامات و توصیه‌های مربوط به فایل‌های ورودی را بعداً در این صفحه پیدا کنید.

مثال زیر اصول اولیه نحوه تولید متن از ورودی فایل را با تجزیه و تحلیل یک فایل ویدئویی ارائه شده به عنوان داده درون خطی (فایل کدگذاری شده با base64) نشان می دهد.

توجه داشته باشید که این مثال ارائه فایل به صورت درون خطی را نشان می دهد، اما SDK ها از ارائه URL YouTube نیز پشتیبانی می کنند.

سویفت

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")

// Provide a text prompt to include with the video
let prompt = "What is in the video?"

// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")

Kotlin

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.

برای Kotlin، روش‌های موجود در این SDK توابع تعلیق هستند و باید از یک محدوده Coroutine فراخوانی شوند.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    // Provide a prompt that includes the video specified above and text
    val prompt = content {
        inlineData(bytes, "video/mp4")
        text("What is in the video?")
    }

    // To generate text output, call generateContent with the prompt
    val response = generativeModel.generateContent(prompt)
    Log.d(TAG, response.text ?: "")
  }
}

Java

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.

برای جاوا، روش‌های موجود در این SDK یک ListenableFuture برمی‌گردانند.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes the video specified above and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("What is in the video?")
                .build();

        // To generate text output, call generateContent with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        }, executor);
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

Web

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the video
  const prompt = "What do you see?";

  const fileInputEl = document.querySelector("input[type=file]");
  const videoPart = await fileToGenerativePart(fileInputEl.files[0]);

  // To generate text output, call generateContent with the text and video
  const result = await model.generateContent([prompt, videoPart]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");

// Prepare video for input
final video = await File('video0.mp4').readAsBytes();

// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);

// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
  Content.multi([prompt, ...videoPart])
]);
print(response.text);

وحدت

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید GenerateContentAsync() را فراخوانی کنید.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
          UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));

// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");

// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

بیاموزید که چگونه یک مدل مناسب برای مورد استفاده و برنامه خود انتخاب کنید.

جریان پاسخ

قبل از امتحان این نمونه، بخش قبل از شروع این راهنما را تکمیل کنید تا پروژه و برنامه خود را راه اندازی کنید.
در آن بخش، همچنین روی دکمه ای برای ارائه دهنده API Gemini انتخابی خود کلیک می کنید تا محتوای خاص ارائه دهنده را در این صفحه ببینید .

می‌توانید با منتظر ماندن برای کل نتیجه تولید مدل، به تعاملات سریع‌تری برسید و در عوض از استریم برای مدیریت نتایج جزئی استفاده کنید. برای پخش جریانی پاسخ، generateContentStream را فراخوانی کنید.



الزامات و توصیه‌ها برای فایل‌های تصویری ورودی

توجه داشته باشید که فایلی که به عنوان داده های درون خطی ارائه می شود در حین انتقال روی base64 کدگذاری می شود که حجم درخواست را افزایش می دهد. اگر درخواست خیلی بزرگ باشد، خطای HTTP 413 دریافت می کنید.

برای کسب اطلاعات دقیق در مورد موارد زیر ، فایل‌های ورودی پشتیبانی شده و الزامات Vertex AI Gemini API را ببینید:

  • گزینه های مختلف برای ارائه یک فایل در یک درخواست (به صورت درون خطی یا با استفاده از URL یا URI فایل)
  • انواع فایل های پشتیبانی شده
  • انواع MIME پشتیبانی شده و نحوه تعیین آنها
  • الزامات و بهترین شیوه ها برای فایل ها و درخواست های چندوجهی



چه کار دیگری می توانید انجام دهید؟

  • قبل از ارسال پیام های طولانی به مدل، نحوه شمارش نشانه ها را بیاموزید.
  • Cloud Storage for Firebase راه‌اندازی کنید تا بتوانید فایل‌های حجیم را در درخواست‌های چندوجهی خود بگنجانید و راه‌حل مدیریت‌شده‌تری برای ارائه فایل‌ها در درخواست‌ها داشته باشید. فایل‌ها می‌توانند شامل تصاویر، PDF، ویدیو و صدا باشند.
  • در مورد آماده شدن برای تولید فکر کنید (به چک لیست تولید مراجعه کنید)، از جمله:

قابلیت های دیگر را امتحان کنید

یاد بگیرید چگونه تولید محتوا را کنترل کنید

همچنین می‌توانید با فرمان‌ها و پیکربندی‌های مدل آزمایش کنید و حتی یک قطعه کد تولید شده را با استفاده از Google AI Studio دریافت کنید.

درباره مدل های پشتیبانی شده بیشتر بدانید

در مورد مدل های موجود برای موارد استفاده مختلف و سهمیه ها و قیمت آنها اطلاعات کسب کنید.


درباره تجربه خود با Firebase AI Logic بازخورد بدهید