You can ask a Gemini model to analyze video files that you provide either inline (base64-encoded) or via URL. When you use Vertex AI in Firebase, you can make this request directly from your app.
With this capability, you can do things like:
- Caption and answer questions about videos
- Analyze specific segments of a video using timestamps
- Transcribe video content by processing both the audio track and visual frames
- Describe, segment, and extract information from videos, including both the audio track and visual frames
Jump to code samples Jump to code for streamed responses
See other guides for additional options for working with video Generate structured output Multi-turn chat |
Before you begin
If you haven't already, complete the
getting started guide, which describes how to
set up your Firebase project, connect your app to Firebase, add the SDK,
initialize the Vertex AI service, and create a GenerativeModel
instance.
For testing and iterating on your prompts and even getting a generated code snippet, we recommend using Vertex AI Studio.
You can use this publicly available file with a MIME type of
video/mp4
(view or download file).https://storage.googleapis.com/cloud-samples-data/video/animals.mp4
Send video files (base64-encoded) & receive text
Make sure that you've completed the Before you begin section of this guide before trying this sample.
You can ask a Gemini model to
generate text by prompting with text and video—providing each
input file's mimeType
and the file itself. Find
requirements and recommendations for input files
later on this page.
Swift
You can call
generateContent()
to generate text from multimodal input of text and video files.
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Kotlin
You can call
generateContent()
to generate text from multimodal input of text and video files.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Java
You can call
generateContent()
to generate text from multimodal input of text and video files.
ListenableFuture
.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
You can call
generateContent()
to generate text from multimodal input of text and video files.
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
You can call
generateContent()
to generate text from multimodal input of text and video files.
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
Learn how to choose a model and optionally a location appropriate for your use case and app.
Stream the response
Make sure that you've completed the Before you begin section of this guide before trying this sample.
You can achieve faster interactions by not waiting for the entire result from
the model generation, and instead use streaming to handle partial results.
To stream the response, call generateContentStream
.
Swift
You can call
generateContentStream()
to stream generated text from multimodal input of text and a single video.
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide the video as `Data` with the appropriate MIME type
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To stream generated text output, call generateContentStream with the text and video
let contentStream = try model.generateContentStream(video, prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Kotlin
You can call
generateContentStream()
to stream generated text from multimodal input of text and a single video.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To stream generated text output, call generateContentStream with the prompt
var fullResponse = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
Log.d(TAG, chunk.text ?: "")
fullResponse += chunk.text
}
}
}
Java
You can call
generateContentStream()
to stream generated text from multimodal input of text and a single video.
Publisher
type from the Reactive Streams library.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To stream generated text output, call generateContentStream with the prompt
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
fullResponse[0] += chunk;
}
@Override
public void onComplete() {
System.out.println(fullResponse[0]);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) {
}
});
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
You can call
generateContentStream()
to stream generated text from multimodal input of text and a single video.
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To stream generated text output, call generateContentStream with the text and video
const result = await model.generateContentStream([prompt, videoPart]);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
}
run();
Dart
You can call
generateContentStream()
to stream generated text from multimodal input of text and a single video.
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To stream generated text output, call generateContentStream with the text and image
final response = await model.generateContentStream([
Content.multi([prompt,videoPart])
]);
await for (final chunk in response) {
print(chunk.text);
}
Requirements and recommendations for input video files
See "Supported input files and requirements for the Vertex AI Gemini API" to learn detailed information about the following:
- Different options for providing a file in a request (either inline or using the file's URL or URI)
- Requirements and best practices for video files
Supported video MIME types
Gemini multimodal models support the following video MIME types:
Video MIME type | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
FLV - video/x-flv |
||
MOV - video/quicktime |
||
MPEG - video/mpeg |
||
MPEGPS - video/mpegps |
||
MPG - video/mpg |
||
MP4 - video/mp4 |
||
WEBM - video/webm |
||
WMV - video/wmv |
||
3GPP - video/3gpp |
Limits per request
Here's the maximum number of video files allowed in a prompt request:
- Gemini 2.0 Flash and Gemini 2.0 Flash‑Lite: 10 video files
What else can you do?
- Learn how to count tokens before sending long prompts to the model.
- Set up Cloud Storage for Firebase so that you can include large files in your multimodal requests and have a more managed solution for providing files in prompts. Files can include images, PDFs, video, and audio.
- Start thinking about preparing for production, including setting up Firebase App Check to protect the Gemini API from abuse by unauthorized clients. Also, make sure to review the production checklist.
Try out other capabilities
- Build multi-turn conversations (chat).
- Generate text from text-only prompts.
- Generate structured output (like JSON) from both text and multimodal prompts.
- Generate images from text prompts.
- Use function calling to connect generative models to external systems and information.
Learn how to control content generation
- Understand prompt design, including best practices, strategies, and example prompts.
- Configure model parameters like temperature and maximum output tokens (for Gemini) or aspect ratio and person generation (for Imagen).
- Use safety settings to adjust the likelihood of getting responses that may be considered harmful.
Learn more about the supported models
Learn about the models available for various use cases and their quotas and pricing.Give feedback about your experience with Vertex AI in Firebase