Menganalisis file audio menggunakan Gemini API

Anda dapat meminta model Gemini untuk menganalisis file audio yang Anda berikan secara inline (dienkode base64) atau melalui URL. Saat menggunakan Firebase AI Logic, Anda dapat membuat permintaan ini langsung dari aplikasi.

Dengan kemampuan ini, Anda dapat melakukan hal-hal seperti:

  • Menjelaskan, meringkas, atau menjawab pertanyaan tentang konten audio
  • Mentranskripsikan konten audio
  • Menganalisis segmen audio tertentu menggunakan stempel waktu

Langsung ke contoh kode Langsung ke kode untuk respons yang di-streaming


Lihat panduan lain untuk mengetahui opsi tambahan dalam menangani audio
Membuat output terstruktur Chat multi-giliran Streaming dua arah

Sebelum memulai

Klik penyedia Gemini API untuk melihat konten dan kode khusus penyedia di halaman ini.

Jika Anda belum melakukannya, selesaikan panduan memulai, yang menjelaskan cara menyiapkan project Firebase, menghubungkan aplikasi ke Firebase, menambahkan SDK, menginisialisasi layanan backend untuk penyedia Gemini API yang Anda pilih, dan membuat instance GenerativeModel.

Untuk menguji dan melakukan iterasi pada perintah Anda, bahkan mendapatkan cuplikan kode yang dihasilkan, sebaiknya gunakan Google AI Studio.

Membuat teks dari file audio (enkode base64)

Sebelum mencoba contoh ini, selesaikan bagian Sebelum memulai dalam panduan ini untuk menyiapkan project dan aplikasi.
Di bagian tersebut, Anda juga akan mengklik tombol untuk penyedia Gemini API yang dipilih sehingga Anda melihat konten khusus penyedia di halaman ini.

Anda dapat meminta model Gemini untuk membuat teks dengan meminta teks dan audio—memberikan mimeType file input dan file itu sendiri. Temukan persyaratan dan rekomendasi untuk file input nanti di halaman ini.

Swift

Anda dapat memanggil generateContent() untuk membuat teks dari input multimodal teks dan satu file audio.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the audio as `Data`
guard let audioData = try? Data(contentsOf: audioURL) else {
    print("Error loading audio data.")
    return // Or handle the error appropriately
}

// Specify the appropriate audio MIME type
let audio = InlineDataPart(data: audioData, mimeType: "audio/mpeg")


// Provide a text prompt to include with the audio
let prompt = "Transcribe what's said in this audio recording."

// To generate text output, call `generateContent` with the audio and text prompt
let response = try await model.generateContent(audio, prompt)

// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")

Kotlin

Anda dapat memanggil generateContent() untuk membuat teks dari input multimodal teks dan satu file audio.

Untuk Kotlin, metode dalam SDK ini adalah fungsi penangguhan dan perlu dipanggil dari Cakupan coroutine.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver

val inputStream = contentResolver.openInputStream(audioUri)

if (inputStream != null) {  // Check if the audio loaded successfully
    inputStream.use { stream ->
        val bytes = stream.readBytes()

        // Provide a prompt that includes the audio specified above and text
        val prompt = content {
            inlineData(bytes, "audio/mpeg")  // Specify the appropriate audio MIME type
            text("Transcribe what's said in this audio recording.")
        }

        // To generate text output, call `generateContent` with the prompt
        val response = generativeModel.generateContent(prompt)

        // Log the generated text, handling the case where it might be null
        Log.d(TAG, response.text?: "")
    }
} else {
    Log.e(TAG, "Error getting input stream for audio.")
    // Handle the error appropriately
}

Java

Anda dapat memanggil generateContent() untuk membuat teks dari input multimodal teks dan satu file audio.

Untuk Java, metode dalam SDK ini menampilkan ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();

try (InputStream stream = resolver.openInputStream(audioUri)) {
    File audioFile = new File(new URI(audioUri.toString()));
    int audioSize = (int) audioFile.length();
    byte audioBytes = new byte[audioSize];
    if (stream != null) {
        stream.read(audioBytes, 0, audioBytes.length);
        stream.close();

        // Provide a prompt that includes the audio specified above and text
        Content prompt = new Content.Builder()
              .addInlineData(audioBytes, "audio/mpeg")  // Specify the appropriate audio MIME type
              .addText("Transcribe what's said in this audio recording.")
              .build();

        // To generate text output, call `generateContent` with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String text = result.getText();
                Log.d(TAG, (text == null) ? "" : text);
            }
            @Override
            public void onFailure(Throwable t) {
                Log.e(TAG, "Failed to generate a response", t);
            }
        }, executor);
    } else {
        Log.e(TAG, "Error getting input stream for file.");
        // Handle the error appropriately
    }
} catch (IOException e) {
    Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
    Log.e(TAG, "Invalid audio file", e);
}

Web

Anda dapat memanggil generateContent() untuk membuat teks dari input multimodal teks dan satu file audio.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(','));
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the audio
  const prompt = "Transcribe what's said in this audio recording.";

  // Prepare audio for input
  const fileInputEl = document.querySelector("input[type=file]");
  const audioPart = await fileToGenerativePart(fileInputEl.files);

  // To generate text output, call `generateContent` with the text and audio
  const result = await model.generateContent([prompt, audioPart]);

  // Log the generated text, handling the case where it might be undefined
  console.log(result.response.text() ?? "No text in response.");
}

run();

Dart

Anda dapat memanggil generateContent() untuk membuat teks dari input multimodal teks dan satu file audio.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the audio
final prompt = TextPart("Transcribe what's said in this audio recording.");

// Prepare audio for input
final audio = await File('audio0.mp3').readAsBytes();

// Provide the audio as `Data` with the appropriate audio MIME type
final audioPart = InlineDataPart('audio/mpeg', audio);

// To generate text output, call `generateContent` with the text and audio
final response = await model.generateContent([
  Content.multi([prompt,audioPart])
]);

// Print the generated text
print(response.text);

Unity

Anda dapat memanggil GenerateContentAsync() untuk membuat teks dari input multimodal teks dan satu file audio.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a text prompt to include with the audio
var prompt = ModelContent.Text("Transcribe what's said in this audio recording.");

// Provide the audio as `data` with the appropriate audio MIME type
var audio = ModelContent.InlineData("audio/mpeg",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
        UnityEngine.Application.streamingAssetsPath, "audio0.mp3")));

// To generate text output, call `GenerateContentAsync` with the text and audio
var response = await model.GenerateContentAsync(new [] { prompt, audio });

// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Pelajari cara memilih model yang sesuai untuk kasus penggunaan dan aplikasi Anda.

Menampilkan respons secara bertahap

Sebelum mencoba contoh ini, selesaikan bagian Sebelum memulai dalam panduan ini untuk menyiapkan project dan aplikasi.
Di bagian tersebut, Anda juga akan mengklik tombol untuk penyedia Gemini API yang dipilih sehingga Anda melihat konten khusus penyedia di halaman ini.

Anda dapat mencapai interaksi yang lebih cepat dengan tidak menunggu seluruh hasil dari pembuatan model, dan sebagai gantinya menggunakan streaming untuk menangani hasil sebagian. Untuk melakukan streaming respons, panggil generateContentStream.



Persyaratan dan rekomendasi untuk file audio input

Perhatikan bahwa file yang diberikan sebagai data inline dienkode ke base64 saat dalam pengiriman, yang meningkatkan ukuran permintaan. Anda akan mendapatkan error HTTP 413 jika permintaan terlalu besar.

Lihat "File input dan persyaratan yang didukung untuk Vertex AI Gemini API" untuk mempelajari informasi mendetail tentang hal berikut:

Jenis MIME audio yang didukung

Model multimodal Gemini mendukung jenis MIME audio berikut:

Jenis MIME audio Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
AAC - audio/aac
FLAC - audio/flac
MP3 - audio/mp3
MPA - audio/m4a
MPEG - audio/mpeg
MPGA - audio/mpga
MP4 - audio/mp4
OPUS - audio/opus
PCM - audio/pcm
WAV - audio/wav
WEBM - audio/webm

Batas per permintaan

Anda dapat menyertakan maksimal 1 file audio dalam permintaan perintah.



Kamu bisa apa lagi?

Mencoba kemampuan lain

Pelajari cara mengontrol pembuatan konten

Anda juga dapat bereksperimen dengan perintah dan konfigurasi model, bahkan mendapatkan cuplikan kode yang dihasilkan menggunakan Google AI Studio.

Pelajari lebih lanjut model yang didukung

Pelajari model yang tersedia untuk berbagai kasus penggunaan serta kuota dan harga-nya.


Berikan masukan tentang pengalaman Anda dengan Firebase AI Logic