Dengan Gemini API, Anda dapat membuat percakapan dalam format bebas di
beberapa giliran. Firebase AI Logic SDK menyederhanakan proses dengan mengelola
status percakapan, sehingga tidak seperti generateContent()
(atau generateContentStream()
), Anda tidak perlu menyimpan histori percakapan
sendiri.
Sebelum memulai
Klik penyedia Gemini API untuk melihat konten dan kode khusus penyedia di halaman ini. |
Jika Anda belum melakukannya, selesaikan panduan memulai, yang menjelaskan cara menyiapkan project Firebase, menghubungkan aplikasi ke Firebase, menambahkan SDK, menginisialisasi layanan backend untuk penyedia Gemini API yang Anda pilih, dan membuat instance GenerativeModel
.
Untuk menguji dan melakukan iterasi pada perintah Anda, bahkan mendapatkan cuplikan kode yang dihasilkan, sebaiknya gunakan Google AI Studio.
Mengirim permintaan perintah chat
Sebelum mencoba contoh ini, selesaikan bagian
Sebelum memulai dalam panduan ini
untuk menyiapkan project dan aplikasi. Di bagian tersebut, Anda juga akan mengklik tombol untuk penyedia Gemini API yang dipilih sehingga Anda melihat konten khusus penyedia di halaman ini. |
Untuk membuat percakapan multi-giliran (seperti chat), mulailah dengan melakukan inisialisasi chat dengan memanggil startChat()
. Kemudian, gunakan
sendMessage()
untuk mengirim pesan pengguna baru, yang
juga akan menambahkan pesan dan respons ke histori chat.
Ada dua kemungkinan opsi untuk role
yang terkait dengan konten dalam
percakapan:
user
: peran yang memberikan perintah. Nilai ini adalah default untuk panggilan kesendMessage()
, dan fungsi akan menampilkan pengecualian jika peran yang berbeda diteruskan.model
: peran yang memberikan respons. Peran ini dapat digunakan saat memanggilstartChat()
denganhistory
yang ada.
Swift
Anda dapat memanggil
startChat()
dan
sendMessage()
untuk mengirim pesan pengguna baru:
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Optionally specify existing chat history
let history = [
ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]
// Initialize the chat with optional chat history
let chat = model.startChat(history: history)
// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
print(response.text ?? "No text in response.")
Kotlin
Anda dapat memanggil startChat()
dan
sendMessage()
untuk mengirim pesan pengguna baru:
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
// Initialize the chat
val chat = generativeModel.startChat(
history = listOf(
content(role = "user") { text("Hello, I have 2 dogs in my house.") },
content(role = "model") { text("Great to meet you. What would you like to know?") }
)
)
val response = chat.sendMessage("How many paws are in my house?")
print(response.text)
Java
Anda dapat memanggil
startChat()
dan
sendMessage()
untuk mengirim pesan pengguna baru:
ListenableFuture
.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();
Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();
List<Content> history = Arrays.asList(userContent, modelContent);
// Initialize the chat
ChatFutures chat = model.startChat(history);
// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");
Content message = messageBuilder.build();
// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
Anda dapat memanggil
startChat()
dan
sendMessage()
untuk mengirim pesan pengguna baru:
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
async function run() {
const chat = model.startChat({
history: [
{
role: "user",
parts: [{ text: "Hello, I have 2 dogs in my house." }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
generationConfig: {
maxOutputTokens: 100,
},
});
const msg = "How many paws are in my house?";
const result = await chat.sendMessage(msg);
const response = await result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Anda dapat memanggil
startChat()
dan
sendMessage()
untuk mengirim pesan pengguna baru:
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
final chat = model.startChat();
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
final response = await chat.sendMessage(prompt);
print(response.text);
Unity
Anda dapat memanggil
StartChat()
dan
SendMessageAsync()
untuk mengirim pesan pengguna baru:
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Optionally specify existing chat history
var history = new [] {
ModelContent.Text("Hello, I have 2 dogs in my house."),
new ModelContent("model", new ModelContent.TextPart("Great to meet you. What would you like to know?")),
};
// Initialize the chat with optional chat history
var chat = model.StartChat(history);
// To generate text output, call SendMessageAsync and pass in the message
var response = await chat.SendMessageAsync("How many paws are in my house?");
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Pelajari cara memilih model yang sesuai untuk kasus penggunaan dan aplikasi Anda.
Menampilkan respons secara bertahap
Sebelum mencoba contoh ini, selesaikan bagian
Sebelum memulai dalam panduan ini
untuk menyiapkan project dan aplikasi. Di bagian tersebut, Anda juga akan mengklik tombol untuk penyedia Gemini API yang dipilih sehingga Anda melihat konten khusus penyedia di halaman ini. |
Anda dapat mencapai interaksi yang lebih cepat dengan tidak menunggu seluruh hasil dari
pembuatan model, dan sebagai gantinya menggunakan streaming untuk menangani hasil sebagian.
Untuk melakukan streaming respons, panggil sendMessageStream()
.
Kamu bisa apa lagi?
- Pelajari cara menghitung token sebelum mengirim perintah panjang ke model.
- Siapkan Cloud Storage for Firebase agar Anda dapat menyertakan file besar dalam permintaan multimodal dan memiliki solusi yang lebih terkelola untuk menyediakan file dalam perintah. File dapat mencakup gambar, PDF, video, dan audio.
-
Mulailah memikirkan persiapan untuk produksi (lihat
checklist produksi),
termasuk:
- Menyiapkan Firebase App Check untuk melindungi Gemini API dari penyalahgunaan oleh klien yang tidak sah.
- Mengintegrasikan Firebase Remote Config untuk memperbarui nilai di aplikasi Anda (seperti nama model) tanpa merilis versi aplikasi baru.
Mencoba kemampuan lain
- Buat teks dari perintah khusus teks.
- Buat teks dengan meminta berbagai jenis file, seperti gambar, PDF, video, dan audio.
- Buat output terstruktur (seperti JSON) dari prompt teks dan multimodal.
- Buat gambar dari perintah teks.
- Gunakan panggilan fungsi untuk menghubungkan model generatif ke sistem dan informasi eksternal.
Pelajari cara mengontrol pembuatan konten
- Memahami desain perintah, termasuk praktik terbaik, strategi, dan contoh perintah.
- Mengonfigurasi parameter model seperti suhu dan token output maksimum (untuk Gemini) atau rasio aspek dan pembuatan orang (untuk Imagen).
- Gunakan setelan keamanan untuk menyesuaikan kemungkinan mendapatkan respons yang mungkin dianggap berbahaya.
Pelajari lebih lanjut model yang didukung
Pelajari model yang tersedia untuk berbagai kasus penggunaan serta kuota dan harga-nya.Berikan masukan tentang pengalaman Anda dengan Firebase AI Logic