Phân tích tệp hình ảnh bằng API Gemini

Bạn có thể yêu cầu mô hình Gemini phân tích các tệp hình ảnh mà bạn cung cấp cùng dòng (được mã hoá base64) hoặc thông qua URL. Khi sử dụng Firebase AI Logic, bạn có thể đưa ra yêu cầu này ngay trong ứng dụng của mình.

Với khả năng này, bạn có thể làm những việc như:

  • Tạo phụ đề hoặc trả lời câu hỏi về hình ảnh
  • Viết một câu chuyện ngắn hoặc bài thơ về một hình ảnh
  • Phát hiện các đối tượng trong hình ảnh và trả về toạ độ hộp giới hạn cho các đối tượng đó
  • Gắn nhãn hoặc phân loại một tập hợp hình ảnh theo cảm xúc, kiểu hoặc đặc điểm khác

Chuyển đến mã mẫu Chuyển đến mã cho phản hồi truyền trực tuyến


Xem các hướng dẫn khác để biết thêm các tuỳ chọn xử lý hình ảnh
Tạo đầu ra có cấu trúc Trò chuyện nhiều lượt Phân tích hình ảnh trên thiết bị Tạo hình ảnh

Trước khi bắt đầu

Nhấp vào nhà cung cấp Gemini API để xem nội dung và mã dành riêng cho nhà cung cấp trên trang này.

Nếu bạn chưa hoàn tất, hãy hoàn thành hướng dẫn bắt đầu sử dụng. Hướng dẫn này mô tả cách thiết lập dự án Firebase, kết nối ứng dụng với Firebase, thêm SDK, khởi chạy dịch vụ phụ trợ cho nhà cung cấp Gemini API mà bạn đã chọn và tạo một thực thể GenerativeModel.

Để kiểm thử và lặp lại các câu lệnh của bạn, thậm chí là nhận một đoạn mã đã tạo, bạn nên sử dụng Google AI Studio.

Tạo văn bản từ tệp hình ảnh (được mã hoá base64)

Trước khi thử mẫu này, hãy hoàn tất phần Trước khi bắt đầu của hướng dẫn này để thiết lập dự án và ứng dụng.
Trong phần đó, bạn cũng sẽ nhấp vào nút của nhà cung cấp Gemini API mà bạn đã chọn để xem nội dung dành riêng cho nhà cung cấp trên trang này.

Bạn có thể yêu cầu mô hình Gemini tạo văn bản bằng cách nhắc bằng văn bản và hình ảnh, cung cấp mimeType của mỗi tệp đầu vào và chính tệp đó. Hãy xem các yêu cầu và đề xuất đối với tệp đầu vào ở phần sau của trang này.

Swift

Bạn có thể gọi generateContent() để tạo văn bản từ dữ liệu đầu vào đa phương thức của văn bản và hình ảnh.

Nhập một tệp


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


guard let image = UIImage(systemName: "bicycle") else { fatalError() }

// Provide a text prompt to include with the image
let prompt = "What's in this picture?"

// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image, prompt)
print(response.text ?? "No text in response.")

Nhập nhiều tệp


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


guard let image1 = UIImage(systemName: "car") else { fatalError() }
guard let image2 = UIImage(systemName: "car.2") else { fatalError() }

// Provide a text prompt to include with the images
let prompt = "What's different between these pictures?"

// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image1, image2, prompt)
print(response.text ?? "No text in response.")

Kotlin

Bạn có thể gọi generateContent() để tạo văn bản từ dữ liệu đầu vào đa phương thức của văn bản và hình ảnh.

Đối với Kotlin, các phương thức trong SDK này là hàm tạm ngưng và cần được gọi từ phạm vi Coroutine.

Nhập một tệp


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


// Loads an image from the app/res/drawable/ directory
val bitmap: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)

// Provide a prompt that includes the image specified above and text
val prompt = content {
  image(bitmap)
  text("What developer tool is this mascot from?")
}

// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)

Nhập nhiều tệp

Đối với Kotlin, các phương thức trong SDK này là hàm tạm ngưng và cần được gọi từ phạm vi Coroutine.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


// Loads an image from the app/res/drawable/ directory
val bitmap1: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
val bitmap2: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky_eats_pizza)

// Provide a prompt that includes the images specified above and text
val prompt = content {
  image(bitmap1)
  image(bitmap2)
  text("What is different between these pictures?")
}

// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)

Java

Bạn có thể gọi generateContent() để tạo văn bản từ dữ liệu đầu vào đa phương thức của văn bản và hình ảnh.

Đối với Java, các phương thức trong SDK này trả về một ListenableFuture.

Nhập một tệp


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);

// Provide a prompt that includes the image specified above and text
Content content = new Content.Builder()
        .addImage(bitmap)
        .addText("What developer tool is this mascot from?")
        .build();

// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Nhập nhiều tệp


// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


Bitmap bitmap1 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
Bitmap bitmap2 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky_eats_pizza);

// Provide a prompt that includes the images specified above and text
Content prompt = new Content.Builder()
    .addImage(bitmap1)
    .addImage(bitmap2)
    .addText("What's different between these pictures?")
    .build();

// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web

Bạn có thể gọi generateContent() để tạo văn bản từ dữ liệu đầu vào đa phương thức của văn bản và hình ảnh.

Nhập một tệp


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the image
  const prompt = "What's different between these pictures?";

  const fileInputEl = document.querySelector("input[type=file]");
  const imagePart = await fileToGenerativePart(fileInputEl.files[0]);

  // To generate text output, call generateContent with the text and image
  const result = await model.generateContent([prompt, imagePart]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Nhập nhiều tệp


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the images
  const prompt = "What's different between these pictures?";

  // Prepare images for input
  const fileInputEl = document.querySelector("input[type=file]");
  const imageParts = await Promise.all(
    [...fileInputEl.files].map(fileToGenerativePart)
  );

  // To generate text output, call generateContent with the text and images
  const result = await model.generateContent([prompt, ...imageParts]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

Bạn có thể gọi generateContent() để tạo văn bản từ dữ liệu đầu vào đa phương thức của văn bản và hình ảnh.

Nhập một tệp


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the image
final prompt = TextPart("What's in the picture?");
// Prepare images for input
final image = await File('image0.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);

// To generate text output, call generateContent with the text and image
final response = await model.generateContent([
  Content.multi([prompt,imagePart])
]);
print(response.text);

Nhập nhiều tệp


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


final (firstImage, secondImage) = await (
  File('image0.jpg').readAsBytes(),
  File('image1.jpg').readAsBytes()
).wait;
// Provide a text prompt to include with the images
final prompt = TextPart("What's different between these pictures?");
// Prepare images for input
final imageParts = [
  InlineDataPart('image/jpeg', firstImage),
  InlineDataPart('image/jpeg', secondImage),
];

// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
  Content.multi([prompt, ...imageParts])
]);
print(response.text);

Unity

Bạn có thể gọi generateContent() để tạo văn bản từ dữ liệu đầu vào đa phương thức của văn bản và hình ảnh.

Nhập một tệp


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Convert a Texture2D into InlineDataParts
var grayImage = ModelContent.InlineData("image/png",
      UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.grayTexture));

// Provide a text prompt to include with the image
var prompt = ModelContent.Text("What's in this picture?");

// To generate text output, call GenerateContentAsync and pass in the prompt
var response = await model.GenerateContentAsync(new [] { grayImage, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Nhập nhiều tệp


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Convert Texture2Ds into InlineDataParts
var blackImage = ModelContent.InlineData("image/png",
      UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.blackTexture));
var whiteImage = ModelContent.InlineData("image/png",
      UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.whiteTexture));

// Provide a text prompt to include with the images
var prompt = ModelContent.Text("What's different between these pictures?");

// To generate text output, call GenerateContentAsync and pass in the prompt
var response = await model.GenerateContentAsync(new [] { blackImage, whiteImage, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Tìm hiểu cách chọn một mô hình phù hợp với trường hợp sử dụng và ứng dụng của bạn.

Truyền trực tuyến phản hồi

Trước khi thử mẫu này, hãy hoàn tất phần Trước khi bắt đầu của hướng dẫn này để thiết lập dự án và ứng dụng.
Trong phần đó, bạn cũng sẽ nhấp vào nút của nhà cung cấp Gemini API mà bạn đã chọn để xem nội dung dành riêng cho nhà cung cấp trên trang này.

Bạn có thể đạt được các lượt tương tác nhanh hơn bằng cách không chờ toàn bộ kết quả từ quá trình tạo mô hình, mà thay vào đó, hãy sử dụng tính năng truyền trực tuyến để xử lý một phần kết quả. Để truyền trực tuyến phản hồi, hãy gọi generateContentStream.



Yêu cầu và đề xuất đối với tệp hình ảnh đầu vào

Xin lưu ý rằng tệp được cung cấp dưới dạng dữ liệu nội tuyến sẽ được mã hoá thành base64 trong quá trình truyền, điều này làm tăng kích thước của yêu cầu. Bạn sẽ gặp lỗi HTTP 413 nếu yêu cầu quá lớn.

Hãy xem phần "Các tệp đầu vào được hỗ trợ và yêu cầu đối với Vertex AI Gemini API" để tìm hiểu thông tin chi tiết về những nội dung sau:

Các loại MIME hình ảnh được hỗ trợ

Các mô hình đa phương thức Gemini hỗ trợ các loại MIME hình ảnh sau:

Loại MIME hình ảnh Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
PNG – image/png
JPEG – image/jpeg
WebP – image/webp

Giới hạn cho mỗi yêu cầu

Không có giới hạn cụ thể về số lượng pixel trong một hình ảnh. Tuy nhiên, hình ảnh lớn hơn sẽ được điều chỉnh theo tỷ lệ và thêm vào để phù hợp với độ phân giải tối đa là 3072 x 3072 trong khi vẫn giữ nguyên tỷ lệ khung hình gốc.

Sau đây là số lượng tệp hình ảnh tối đa được phép trong một yêu cầu lời nhắc:

  • Gemini 2.0 FlashGemini 2.0 Flash‑Lite: 3.000 hình ảnh



Bạn có thể làm gì khác?

Thử các tính năng khác

Tìm hiểu cách kiểm soát việc tạo nội dung

Bạn cũng có thể thử nghiệm với các lời nhắc và cấu hình mô hình, thậm chí nhận được một đoạn mã được tạo bằng Google AI Studio.

Tìm hiểu thêm về các mẫu được hỗ trợ

Tìm hiểu về các mô hình có sẵn cho nhiều trường hợp sử dụng, cũng như hạn mứcgiá của các mô hình đó.


Gửi ý kiến phản hồi về trải nghiệm của bạn với Firebase AI Logic