Bạn có thể yêu cầu mô hình Gemini phân tích các tệp hình ảnh mà bạn cung cấp cùng dòng (được mã hoá base64) hoặc thông qua URL. Khi sử dụng Firebase AI Logic, bạn có thể đưa ra yêu cầu này ngay từ ứng dụng của mình.
Với tính năng này, bạn có thể làm những việc như:
- Tạo chú thích hoặc trả lời câu hỏi về hình ảnh
- Viết một truyện ngắn hoặc bài thơ về một hình ảnh
- Phát hiện các đối tượng trong hình ảnh và trả về toạ độ của khung hình chữ nhật cho các đối tượng đó
- Gắn nhãn hoặc phân loại một nhóm hình ảnh theo cảm xúc, phong cách hoặc đặc điểm khác
Chuyển đến mã mẫu Chuyển đến mã cho các phản hồi được truyền trực tuyến
Xem các hướng dẫn khác để biết thêm lựa chọn về cách xử lý hình ảnh Tạo đầu ra có cấu trúc Trò chuyện nhiều lượt Phân tích hình ảnh trên thiết bị Tạo hình ảnh |
Trước khi bắt đầu
Nhấp vào nhà cung cấp Gemini API để xem nội dung và mã dành riêng cho nhà cung cấp trên trang này. |
Nếu bạn chưa thực hiện, hãy hoàn tất hướng dẫn bắt đầu sử dụng. Hướng dẫn này mô tả cách thiết lập dự án Firebase, kết nối ứng dụng với Firebase, thêm SDK, khởi động dịch vụ phụ trợ cho nhà cung cấp Gemini API mà bạn chọn và tạo một thực thể GenerativeModel
.
Để kiểm thử và lặp lại các câu lệnh, thậm chí nhận được một đoạn mã được tạo, bạn nên sử dụng Google AI Studio.
Tạo văn bản từ tệp hình ảnh (được mã hoá base64)
Trước khi dùng thử mẫu này, hãy hoàn tất phần Trước khi bắt đầu của hướng dẫn này để thiết lập dự án và ứng dụng của bạn. Trong phần đó, bạn cũng sẽ nhấp vào một nút cho nhà cung cấp Gemini API mà bạn chọn để xem nội dung dành riêng cho nhà cung cấp trên trang này. |
Bạn có thể yêu cầu mô hình Gemini tạo văn bản bằng cách đưa ra câu lệnh kèm theo văn bản và hình ảnh, đồng thời cung cấp mimeType
của từng tệp đầu vào và chính tệp đó. Tìm các yêu cầu và đề xuất đối với tệp đầu vào ở phần sau của trang này.
Swift
Bạn có thể gọi generateContent()
để tạo văn bản từ dữ liệu đầu vào đa phương thức gồm văn bản và hình ảnh.
Đầu vào là một tệp
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
guard let image = UIImage(systemName: "bicycle") else { fatalError() }
// Provide a text prompt to include with the image
let prompt = "What's in this picture?"
// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image, prompt)
print(response.text ?? "No text in response.")
Nhiều tệp đầu vào
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
guard let image1 = UIImage(systemName: "car") else { fatalError() }
guard let image2 = UIImage(systemName: "car.2") else { fatalError() }
// Provide a text prompt to include with the images
let prompt = "What's different between these pictures?"
// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image1, image2, prompt)
print(response.text ?? "No text in response.")
Kotlin
Bạn có thể gọi generateContent()
để tạo văn bản từ dữ liệu đầu vào đa phương thức gồm văn bản và hình ảnh.
Đầu vào là một tệp
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
// Loads an image from the app/res/drawable/ directory
val bitmap: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
// Provide a prompt that includes the image specified above and text
val prompt = content {
image(bitmap)
text("What developer tool is this mascot from?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)
Nhiều tệp đầu vào
Đối với Kotlin, các phương thức trong SDK này là hàm tạm ngưng và cần được gọi qua Phạm vi Coroutine.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
// Loads an image from the app/res/drawable/ directory
val bitmap1: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
val bitmap2: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky_eats_pizza)
// Provide a prompt that includes the images specified above and text
val prompt = content {
image(bitmap1)
image(bitmap2)
text("What is different between these pictures?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
Bạn có thể gọi generateContent()
để tạo văn bản từ dữ liệu đầu vào đa phương thức gồm văn bản và hình ảnh.
ListenableFuture
.
Đầu vào là một tệp
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
// Provide a prompt that includes the image specified above and text
Content content = new Content.Builder()
.addImage(bitmap)
.addText("What developer tool is this mascot from?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Nhiều tệp đầu vào
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
Bitmap bitmap1 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
Bitmap bitmap2 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky_eats_pizza);
// Provide a prompt that includes the images specified above and text
Content prompt = new Content.Builder()
.addImage(bitmap1)
.addImage(bitmap2)
.addText("What's different between these pictures?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
Bạn có thể gọi generateContent()
để tạo văn bản từ dữ liệu đầu vào đa phương thức gồm văn bản và hình ảnh.
Đầu vào là một tệp
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the image
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and image
const result = await model.generateContent([prompt, imagePart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Nhiều tệp đầu vào
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the images
const prompt = "What's different between these pictures?";
// Prepare images for input
const fileInputEl = document.querySelector("input[type=file]");
const imageParts = await Promise.all(
[...fileInputEl.files].map(fileToGenerativePart)
);
// To generate text output, call generateContent with the text and images
const result = await model.generateContent([prompt, ...imageParts]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Bạn có thể gọi generateContent()
để tạo văn bản từ dữ liệu đầu vào đa phương thức gồm văn bản và hình ảnh.
Đầu vào là một tệp
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the image
final prompt = TextPart("What's in the picture?");
// Prepare images for input
final image = await File('image0.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);
// To generate text output, call generateContent with the text and image
final response = await model.generateContent([
Content.multi([prompt,imagePart])
]);
print(response.text);
Nhiều tệp đầu vào
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
final (firstImage, secondImage) = await (
File('image0.jpg').readAsBytes(),
File('image1.jpg').readAsBytes()
).wait;
// Provide a text prompt to include with the images
final prompt = TextPart("What's different between these pictures?");
// Prepare images for input
final imageParts = [
InlineDataPart('image/jpeg', firstImage),
InlineDataPart('image/jpeg', secondImage),
];
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...imageParts])
]);
print(response.text);
Unity
Bạn có thể gọi GenerateContentAsync()
để tạo văn bản từ dữ liệu đầu vào đa phương thức gồm văn bản và hình ảnh.
Đầu vào là một tệp
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Convert a Texture2D into InlineDataParts
var grayImage = ModelContent.InlineData("image/png",
UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.grayTexture));
// Provide a text prompt to include with the image
var prompt = ModelContent.Text("What's in this picture?");
// To generate text output, call GenerateContentAsync and pass in the prompt
var response = await model.GenerateContentAsync(new [] { grayImage, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Nhiều tệp đầu vào
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Convert Texture2Ds into InlineDataParts
var blackImage = ModelContent.InlineData("image/png",
UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.blackTexture));
var whiteImage = ModelContent.InlineData("image/png",
UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.whiteTexture));
// Provide a text prompt to include with the images
var prompt = ModelContent.Text("What's different between these pictures?");
// To generate text output, call GenerateContentAsync and pass in the prompt
var response = await model.GenerateContentAsync(new [] { blackImage, whiteImage, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Tìm hiểu cách chọn một mô hình phù hợp với trường hợp sử dụng và ứng dụng của bạn.
Hiện câu trả lời theo thời gian thực
Trước khi dùng thử mẫu này, hãy hoàn tất phần Trước khi bắt đầu của hướng dẫn này để thiết lập dự án và ứng dụng của bạn. Trong phần đó, bạn cũng sẽ nhấp vào một nút cho nhà cung cấp Gemini API mà bạn chọn để xem nội dung dành riêng cho nhà cung cấp trên trang này. |
Bạn có thể đạt được các lượt tương tác nhanh hơn bằng cách không đợi toàn bộ kết quả từ quá trình tạo mô hình mà thay vào đó, hãy sử dụng tính năng truyền phát trực tiếp để xử lý kết quả một phần.
Để truyền trực tuyến câu trả lời, hãy gọi generateContentStream
.
Yêu cầu và đề xuất đối với tệp hình ảnh đầu vào
Xin lưu ý rằng một tệp được cung cấp dưới dạng dữ liệu nội dòng sẽ được mã hoá thành base64 trong quá trình truyền, điều này làm tăng kích thước của yêu cầu. Bạn sẽ gặp lỗi HTTP 413 nếu yêu cầu quá lớn.
Hãy xem phần "Các tệp đầu vào được hỗ trợ và yêu cầu đối với Vertex AI Gemini API" để tìm hiểu thông tin chi tiết về những nội dung sau:
- Các lựa chọn khác nhau để cung cấp một tệp trong yêu cầu (nội tuyến hoặc sử dụng URL của tệp)
- Yêu cầu và các phương pháp hay nhất đối với tệp hình ảnh
Các loại MIME hình ảnh được hỗ trợ
Các mô hình đa phương thức Gemini hỗ trợ các loại MIME hình ảnh sau:
Loại MIME hình ảnh | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
PNG – image/png |
||
JPEG – image/jpeg |
||
WebP – image/webp |
Giới hạn cho mỗi yêu cầu
Không có giới hạn cụ thể về số lượng pixel trong một hình ảnh. Tuy nhiên, hình ảnh lớn hơn sẽ được giảm tỷ lệ và thêm phần đệm để phù hợp với độ phân giải tối đa là 3072 x 3072 trong khi vẫn giữ nguyên tỷ lệ khung hình ban đầu.
Sau đây là số lượng tệp hình ảnh tối đa được phép trong một yêu cầu tạo câu lệnh:
- Gemini 2.0 Flash và Gemini 2.0 Flash‑Lite: 3.000 hình ảnh
Bạn có thể làm gì khác?
- Tìm hiểu cách đếm số lượng mã thông báo trước khi gửi câu lệnh dài cho mô hình.
- Thiết lập Cloud Storage for Firebase để bạn có thể đưa các tệp lớn vào yêu cầu đa phương thức và có một giải pháp được quản lý tốt hơn để cung cấp tệp trong câu lệnh. Tệp có thể bao gồm hình ảnh, tệp PDF, video và âm thanh.
-
Bắt đầu nghĩ đến việc chuẩn bị cho bản phát hành công khai (xem danh sách kiểm tra cho bản phát hành công khai), bao gồm:
- Thiết lập Firebase App Check để bảo vệ Gemini API khỏi hành vi sai trái của các ứng dụng trái phép.
- Tích hợp Firebase Remote Config để cập nhật các giá trị trong ứng dụng (chẳng hạn như tên mô hình) mà không cần phát hành phiên bản ứng dụng mới.
Dùng thử các tính năng khác
- Xây dựng cuộc trò chuyện nhiều lượt (chat).
- Tạo văn bản từ câu lệnh chỉ có văn bản.
- Tạo đầu ra có cấu trúc (chẳng hạn như JSON) từ cả văn bản và câu lệnh đa phương thức.
- Tạo hình ảnh từ câu lệnh dạng văn bản (Gemini hoặc Imagen).
- Sử dụng lệnh gọi hàm để kết nối các mô hình tạo sinh với hệ thống và thông tin bên ngoài.
Tìm hiểu cách kiểm soát hoạt động tạo nội dung
- Tìm hiểu về cách thiết kế câu lệnh, bao gồm các phương pháp hay nhất, chiến lược và ví dụ về câu lệnh.
- Định cấu hình các tham số mô hình như nhiệt độ và số lượng mã thông báo đầu ra tối đa (đối với Gemini) hoặc tỷ lệ khung hình và thế hệ người (đối với Imagen).
- Sử dụng chế độ cài đặt an toàn để điều chỉnh khả năng nhận được những câu trả lời có thể bị coi là gây hại.
Tìm hiểu thêm về các mô hình được hỗ trợ
Tìm hiểu về các mô hình có sẵn cho nhiều trường hợp sử dụng và hạn mức cũng như giá của các mô hình đó.Gửi ý kiến phản hồi về trải nghiệm của bạn với Firebase AI Logic