Puoi chiedere a un modello Gemini di generare testo da un prompt di solo testo o da un prompt multimodale. Quando utilizzi Firebase AI Logic, puoi effettuare questa richiesta direttamente dalla tua app.
I prompt multimodali possono includere più tipi di input, come testo e immagini, PDF, file di testo, audio e video.
Questa guida mostra come generare testo da un prompt di solo testo e da un prompt multimodale di base che include un file.
Vai agli esempi di codice per l'input di solo testo Vai agli esempi di codice per l'input multimodale
Consulta altre guide per ulteriori opzioni per lavorare con il testo Genera output strutturato Chat multi-turno Streaming bidirezionale Genera testo sul dispositivo Genera immagini da testo |
Prima di iniziare
Fai clic sul tuo fornitore Gemini API per visualizzare i contenuti e il codice specifici del fornitore in questa pagina. |
Se non l'hai ancora fatto, consulta la
guida introduttiva, che descrive come configurare il progetto Firebase, collegare l'app a Firebase, aggiungere l'SDK, inizializzare il servizio di backend per il provider Gemini API scelto e creare un'istanza GenerativeModel
.
Per testare e eseguire l'iterazione sui prompt e persino per ottenere uno snippet di codice generato, ti consigliamo di utilizzare Google AI Studio.
Generare testo da input di solo testo
Prima di provare questo esempio, completa la sezione Prima di iniziare di questa guida per configurare il progetto e l'app. In questa sezione, dovrai anche fare clic su un pulsante per il fornitore Gemini API scelto per visualizzare i contenuti specifici del fornitore in questa pagina. |
Puoi chiedere a un modello Gemini di generare testo tramite prompt con input di testo puro.
Swift
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")
Kotlin
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
ListenableFuture
.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
Unity
Puoi chiamare
GenerateContentAsync()
per generare testo da un input di solo testo.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";
// To generate text output, call GenerateContentAsync with the text input
var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Genera testo da input di testo e file (multimodale)
Prima di provare questo esempio, completa la sezione Prima di iniziare di questa guida per configurare il progetto e l'app. In questa sezione, dovrai anche fare clic su un pulsante per il fornitore Gemini API scelto per visualizzare i contenuti specifici del fornitore in questa pagina. |
Puoi chiedere a un modello Gemini di
generare testo fornendo un prompt con testo e un file, fornendo il mimeType
di ogni
file di input e il file stesso. Trova
requisiti e consigli per i file di input
più avanti in questa pagina.
L'esempio seguente mostra le nozioni di base su come generare testo da un input file analizzando un singolo file video fornito come dati incorporati (file codificato in base64).
Tieni presente che questo esempio mostra come fornire il file in linea, ma gli SDK supportano anche la fornitura di un URL di YouTube.
Swift
Puoi chiamare
generateContent()
per generare testo dall'input multimodale di file di testo e video.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Kotlin
Puoi chiamare
generateContent()
per generare testo dall'input multimodale di file di testo e video.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Java
Puoi chiamare
generateContent()
per generare testo dall'input multimodale di file di testo e video.
ListenableFuture
.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
Puoi chiamare
generateContent()
per generare testo dall'input multimodale di file di testo e video.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Puoi chiamare
generateContent()
per generare testo da input multimodali di file di testo e video.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
Unity
Puoi chiamare
GenerateContentAsync()
per generare testo dall'input multimodale di file di testo e video.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Scopri come scegliere un modello appropriato per il tuo caso d'uso e la tua app.
Visualizza la risposta in streaming
Prima di provare questo esempio, completa la sezione Prima di iniziare di questa guida per configurare il progetto e l'app. In questa sezione, dovrai anche fare clic su un pulsante per il fornitore Gemini API scelto per visualizzare i contenuti specifici del fornitore in questa pagina. |
Puoi ottenere interazioni più rapide non aspettando l'intero risultato della generazione del modello, ma utilizzando lo streaming per gestire i risultati parziali.
Per riprodurre in streaming la risposta, chiama generateContentStream
.
Requisiti e consigli per i file immagine di input
Tieni presente che un file fornito come dati in linea viene codificato in base64 durante il transito, il che aumenta le dimensioni della richiesta. Viene visualizzato un errore HTTP 413 se una richiesta è troppo grande.
Consulta File di input supportati e requisiti per Vertex AI Gemini API per informazioni dettagliate su quanto segue:
- Diverse opzioni per fornire un file in una richiesta (in linea o utilizzando l'URL o l'URI del file)
- Tipi di file supportati
- Tipi MIME supportati e come specificarli
- Requisiti e best practice per file e richieste multimodali
Cos'altro puoi fare?
- Scopri come contare i token prima di inviare prompt lunghi al modello.
- Configura Cloud Storage for Firebase in modo da poter includere file di grandi dimensioni nelle richieste multimodali e avere una soluzione più gestita per fornire file nei prompt. I file possono includere immagini, PDF, video e audio.
-
Inizia a pensare alla preparazione per la produzione (consulta l'elenco di controllo per la produzione), tra cui:
- Configurazione di Firebase App Check per proteggere Gemini API da abusi da parte di clienti non autorizzati.
- Integrazione di Firebase Remote Config per aggiornare i valori nell'app (ad esempio il nome del modello) senza rilasciare una nuova versione dell'app.
Provare altre funzionalità
- Crea conversazioni a più turni (chat).
- Genera testo da prompt di solo testo.
- Genera output strutturato (come JSON) da prompt di testo e multimodali.
- Genera immagini da prompt di testo.
- Utilizza le chiamate di funzione per collegare i modelli generativi a sistemi e informazioni esterni.
Scopri come controllare la generazione di contenuti
- Comprendi la progettazione dei prompt, tra cui le best practice, le strategie e i prompt di esempio.
- Configura i parametri del modello, ad esempio la temperatura e il numero massimo di token di output (per Gemini) o le proporzioni e la generazione di persone (per Imagen).
- Utilizza le impostazioni di sicurezza per regolare la probabilità di ricevere risposte che potrebbero essere considerate dannose.
Scopri di più sui modelli supportati
Scopri i modelli disponibili per vari casi d'uso e le relative quote e prezzi.Inviare un feedback sulla tua esperienza con Firebase AI Logic