Dokumente (z. B. PDFs) mit der Gemini API analysieren

Sie können ein Gemini-Modell bitten, Dokumentdateien (z. B. PDFs und Nur-Text-Dateien) zu analysieren, die Sie entweder inline (base64-codiert) oder über eine URL bereitstellen. Wenn Sie Firebase AI Logic verwenden, können Sie diese Anfrage direkt über Ihre App stellen.

Mit dieser Funktion haben Sie beispielsweise folgende Möglichkeiten:

  • Diagramme, Grafiken und Tabellen in Dokumenten analysieren
  • Informationen in strukturierte Ausgabeformate extrahieren
  • Fragen zu visuellen und textlichen Inhalten in Dokumenten beantworten
  • Dokumente zusammenfassen
  • Dokumentinhalte transkribieren, z. B. in HTML, wobei Layouts und Formatierung beibehalten werden, zur Verwendung in nachgelagerten Anwendungen (z. B. in RAG-Pipelines)

 Zu Codebeispielen springen  Zu Code für gestreamte Antworten springen


Weitere Anleitungen für zusätzliche Optionen zum Arbeiten mit Dokumenten (z. B. PDFs)
Strukturierte Ausgabe generieren Chat mit mehreren Anfragen

Hinweis

Klicken Sie auf Ihren Gemini API-Anbieter, um anbieterspezifische Inhalte und Code auf dieser Seite aufzurufen.

Falls noch nicht geschehen, folgen Sie dem Startleitfaden. Darin wird beschrieben, wie Sie Ihr Firebase-Projekt einrichten, Ihre App mit Firebase verbinden, das SDK hinzufügen, den Backend-Dienst für den ausgewählten Gemini API-Anbieter initialisieren und eine GenerativeModel-Instanz erstellen.

Zum Testen und Iterieren von Prompts und zum Generieren von Code-Snippets empfehlen wir die Verwendung von Google AI Studio.

Text aus PDF-Dateien (Base64-codiert) generieren

Bevor Sie dieses Beispiel ausprobieren, müssen Sie den Abschnitt Vorbereitung in diesem Leitfaden durcharbeiten, um Ihr Projekt und Ihre App einzurichten.
In diesem Abschnitt klicken Sie auch auf eine Schaltfläche für den von Ihnen ausgewählten Gemini API-Anbieter, damit auf dieser Seite anbieterspezifische Inhalte angezeigt werden.

Sie können ein Gemini-Modell bitten, Text zu generieren, indem Sie Prompts mit Text und PDFs erstellen. Geben Sie dazu für jede Eingabedatei den mimeType-Wert und die Datei selbst an. Anforderungen und Empfehlungen für Eingabedateien finden Sie weiter unten auf dieser Seite.

Swift

Sie können generateContent() aufrufen, um Text aus multimodalen Eingaben von Text und PDFs zu generieren.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")


// Provide the PDF as `Data` with the appropriate MIME type
let pdf = try InlineDataPart(data: Data(contentsOf: pdfURL), mimeType: "application/pdf")

// Provide a text prompt to include with the PDF file
let prompt = "Summarize the important results in this report."

// To generate text output, call `generateContent` with the PDF file and text prompt
let response = try await model.generateContent(pdf, prompt)

// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")

Kotlin

Sie können generateContent() aufrufen, um Text aus multimodalen Eingaben von Text und PDFs zu generieren.

Für Kotlin sind die Methoden in diesem SDK Suspend-Funktionen und müssen aus einem Coroutine-Bereich aufgerufen werden.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.5-flash")


val contentResolver = applicationContext.contentResolver

// Provide the URI for the PDF file you want to send to the model
val inputStream = contentResolver.openInputStream(pdfUri)

if (inputStream != null) {  // Check if the PDF file loaded successfully
    inputStream.use { stream ->
        // Provide a prompt that includes the PDF file specified above and text
        val prompt = content {
            inlineData(
                bytes = stream.readBytes(),
                mimeType = "application/pdf" // Specify the appropriate PDF file MIME type
            )
            text("Summarize the important results in this report.")
        }

        // To generate text output, call `generateContent` with the prompt
        val response = generativeModel.generateContent(prompt)

        // Log the generated text, handling the case where it might be null
        Log.d(TAG, response.text ?: "")
    }
} else {
    Log.e(TAG, "Error getting input stream for file.")
    // Handle the error appropriately
}

Java

Sie können generateContent() aufrufen, um Text aus multimodalen Eingaben von Text und PDFs zu generieren.

Bei Java geben die Methoden in diesem SDK eine ListenableFuture zurück.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.5-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();

// Provide the URI for the PDF file you want to send to the model
try (InputStream stream = resolver.openInputStream(pdfUri)) {
    if (stream != null) {
        byte[] audioBytes = stream.readAllBytes();
        stream.close();

        // Provide a prompt that includes the PDF file specified above and text
        Content prompt = new Content.Builder()
              .addInlineData(audioBytes, "application/pdf")  // Specify the appropriate PDF file MIME type
              .addText("Summarize the important results in this report.")
              .build();

        // To generate text output, call `generateContent` with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String text = result.getText();
                Log.d(TAG, (text == null) ? "" : text);
            }
            @Override
            public void onFailure(Throwable t) {
                Log.e(TAG, "Failed to generate a response", t);
            }
        }, executor);
    } else {
        Log.e(TAG, "Error getting input stream for file.");
        // Handle the error appropriately
    }
} catch (IOException e) {
    Log.e(TAG, "Failed to read the pdf file", e);
} catch (URISyntaxException e) {
    Log.e(TAG, "Invalid pdf file", e);
}

Web

Sie können generateContent() aufrufen, um Text aus multimodalen Eingaben von Text und PDFs zu generieren.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(','));
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the PDF file
  const prompt = "Summarize the important results in this report.";

  // Prepare PDF file for input
  const fileInputEl = document.querySelector("input[type=file]");
  const pdfPart = await fileToGenerativePart(fileInputEl.files);

  // To generate text output, call `generateContent` with the text and PDF file
  const result = await model.generateContent([prompt, pdfPart]);

  // Log the generated text, handling the case where it might be undefined
  console.log(result.response.text() ?? "No text in response.");
}

run();

Dart

Sie können generateContent() aufrufen, um Text aus multimodalen Eingaben von Text und PDFs zu generieren.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');


// Provide a text prompt to include with the PDF file
final prompt = TextPart("Summarize the important results in this report.");

// Prepare the PDF file for input
final doc = await File('document0.pdf').readAsBytes();

// Provide the PDF file as `Data` with the appropriate PDF file MIME type
final docPart = InlineDataPart('application/pdf', doc);

// To generate text output, call `generateContent` with the text and PDF file
final response = await model.generateContent([
  Content.multi([prompt,docPart])
]);

// Print the generated text
print(response.text);

Einheit

Sie können GenerateContentAsync() aufrufen, um Text aus multimodalen Eingaben von Text und PDFs zu generieren.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");


// Provide a text prompt to include with the PDF file
var prompt = ModelContent.Text("Summarize the important results in this report.");

// Provide the PDF file as `data` with the appropriate PDF file MIME type
var doc = ModelContent.InlineData("application/pdf",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
        UnityEngine.Application.streamingAssetsPath, "document0.pdf")));

// To generate text output, call `GenerateContentAsync` with the text and PDF file
var response = await model.GenerateContentAsync(new [] { prompt, doc });

// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Hier erfahren Sie, wie Sie ein Modell auswählen, der für Ihren Anwendungsfall und Ihre App geeignet ist.

Antwort streamen

Bevor Sie dieses Beispiel ausprobieren, müssen Sie den Abschnitt Vorbereitung in diesem Leitfaden durcharbeiten, um Ihr Projekt und Ihre App einzurichten.
In diesem Abschnitt klicken Sie auch auf eine Schaltfläche für den von Ihnen ausgewählten Gemini API-Anbieter, damit auf dieser Seite anbieterspezifische Inhalte angezeigt werden.

Sie können schnellere Interaktionen erzielen, indem Sie nicht auf das gesamte Ergebnis der Modellgenerierung warten, sondern stattdessen Streaming verwenden, um Teilergebnisse zu verarbeiten. Rufen Sie generateContentStream auf, um die Antwort zu streamen.



Anforderungen und Empfehlungen für Eingabedokumente

Eine als Inline-Daten bereitgestellte Datei wird während der Übertragung in Base64 codiert, wodurch die Größe der Anfrage zunimmt. Sie erhalten einen HTTP 413-Fehler, wenn eine Anfrage zu groß ist.

Unter „Unterstützte Eingabedateien und Anforderungen für die Vertex AI Gemini API“ finden Sie ausführliche Informationen zu Folgendem:

Unterstützte Video-MIME-Typen

Gemini-Multimodal-Modelle unterstützen die folgenden MIME-Dokumenttypen:

MIME-Typ für das Dokument Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
PDF – application/pdf
Text - text/plain

Limits pro Anfrage

PDFs werden als Bilder behandelt, sodass eine einzelne Seite einer PDF-Datei als ein einzelnes Bild behandelt wird. Die Anzahl der Seiten in einem Prompt ist auf die Anzahl der Bilder beschränkt, die das Modell unterstützen kann:

  • Gemini 2.0 Flash und Gemini 2.0 Flash‑Lite:
    • Maximale Anzahl an Dateien pro Anfrage: 3.000
    • Maximale Seitenzahl pro Datei: 1.000
    • Maximale Größe pro Datei: 50 MB



Was kannst du sonst noch tun?

Andere Funktionen ausprobieren

Informationen zum Steuern der Inhaltserstellung

Sie können auch mit Prompts und Modellkonfigurationen experimentieren und sogar ein generiertes Code-Snippet mit Google AI Studio abrufen.

Weitere Informationen zu den unterstützten Modellen

Informationen zu den für verschiedene Anwendungsfälle verfügbaren Modellen sowie zu ihren Kontingenten und Preisen


Feedback zu Firebase AI Logic geben