Sie können ein Gemini-Modell bitten, Text aus einem Nur-Text-Prompt oder einem multimodalen Prompt zu generieren. Wenn Sie Firebase AI Logic verwenden, können Sie diese Anfrage direkt über Ihre App stellen.
Multimodale Prompts können mehrere Arten von Eingaben enthalten, z. B. Text zusammen mit Bildern, PDFs, Textdateien, Audio und Video.
In diesem Leitfaden erfahren Sie, wie Sie Text aus einem reinen Textprompt und aus einem einfachen multimodalen Prompt mit einer Datei generieren.
Codebeispiele für die Eingabe von reinem Text Codebeispiele für die multimodale Eingabe
Weitere Informationen zu Optionen für die Arbeit mit Text Strukturierte Ausgabe generieren Chat mit mehreren Themen Zwei-Wege-Streaming Text auf dem Gerät generieren Bilder aus Text generieren |
Hinweis
Klicke auf deinen Gemini API-Anbieter, um dir anbieterspezifische Inhalte und Code auf dieser Seite anzusehen. |
Sehen Sie sich den Einstiegsleitfaden an, in dem beschrieben wird, wie Sie Ihr Firebase-Projekt einrichten, Ihre App mit Firebase verbinden, das SDK hinzufügen, den Backend-Dienst für den ausgewählten Gemini API-Anbieter initialisieren und eine GenerativeModel
-Instanz erstellen.
Zum Testen und Iterieren Ihrer Prompts und zum Generieren eines Code-Snippets empfehlen wir Google AI Studio.
Text aus reiner Texteingabe generieren
Bevor Sie dieses Beispiel ausprobieren, müssen Sie den Abschnitt Vorbereitung in diesem Leitfaden durcharbeiten, um Ihr Projekt und Ihre App einzurichten. In diesem Abschnitt klicken Sie auch auf eine Schaltfläche für den von Ihnen ausgewählten Gemini API Anbieter, damit auf dieser Seite anbieterspezifische Inhalte angezeigt werden. |
Sie können ein Gemini-Modell bitten, Text zu generieren, indem Sie es mit einer reinen Texteingabe anregen.
Sie können generateContent()
aufrufen, um Text aus reiner Texteingabe zu generieren.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")
Sie können generateContent()
aufrufen, um Text aus reiner Texteingabe zu generieren.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)
Sie können generateContent()
aufrufen, um Text aus reiner Texteingabe zu generieren.
ListenableFuture
zurück.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Sie können generateContent()
aufrufen, um Text aus reiner Texteingabe zu generieren.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Sie können generateContent()
aufrufen, um Text aus reiner Texteingabe zu generieren.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
Sie können GenerateContentAsync()
aufrufen, um Text aus reiner Texteingabe zu generieren.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";
// To generate text output, call GenerateContentAsync with the text input
var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Text aus multimodaler Eingabe (Text und Datei) generieren
Bevor Sie dieses Beispiel ausprobieren, müssen Sie den Abschnitt Vorbereitung in diesem Leitfaden durcharbeiten, um Ihr Projekt und Ihre App einzurichten. In diesem Abschnitt klicken Sie auch auf eine Schaltfläche für den von Ihnen ausgewählten Gemini API Anbieter, damit auf dieser Seite anbieterspezifische Inhalte angezeigt werden. |
Sie können ein Gemini-Modell bitten, Text zu generieren, indem Sie einen Text und eine Datei als Prompt angeben. Geben Sie dazu die mimeType
der jeweiligen Eingabedatei und die Datei selbst an. Anforderungen und Empfehlungen für Eingabedateien finden Sie weiter unten auf dieser Seite.
Im folgenden Beispiel wird gezeigt, wie Text aus einer Dateieingabe generiert wird, indem eine einzelne Videodatei als Inline-Daten (base64-codierte Datei) analysiert wird.
In diesem Beispiel wird die Datei inline bereitgestellt. Die SDKs unterstützen aber auch die Angabe einer YouTube-URL.Beispielvideodatei erforderlich?
Sie können diese öffentlich verfügbare Datei mit dem MIME-Typ
video/mp4
verwenden (Datei ansehen oder herunterladen).https://storage.googleapis.com/cloud-samples-data/video/animals.mp4
Sie können generateContent()
aufrufen, um Text aus multimodaler Eingabe von Text- und Videodateien zu generieren.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Sie können generateContent()
aufrufen, um Text aus multimodaler Eingabe von Text- und Videodateien zu generieren.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Sie können generateContent()
aufrufen, um Text aus multimodaler Eingabe von Text- und Videodateien zu generieren.
ListenableFuture
zurück.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Sie können generateContent()
aufrufen, um Text aus multimodaler Eingabe von Text- und Videodateien zu generieren.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Sie können generateContent()
aufrufen, um Text aus multimodaler Eingabe von Text- und Videodateien zu generieren.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
Sie können GenerateContentAsync()
aufrufen, um Text aus multimodaler Eingabe von Text- und Videodateien zu generieren.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Weitere Informationen zur Auswahl eines Modells
Antwort streamen
Bevor Sie dieses Beispiel ausprobieren, müssen Sie den Abschnitt Vorbereitung in diesem Leitfaden durcharbeiten, um Ihr Projekt und Ihre App einzurichten. In diesem Abschnitt klicken Sie auch auf eine Schaltfläche für den von Ihnen ausgewählten Gemini API Anbieter, damit auf dieser Seite anbieterspezifische Inhalte angezeigt werden. |
Sie können schnellere Interaktionen erzielen, wenn Sie nicht auf das vollständige Ergebnis der Modellgenerierung warten, sondern stattdessen Streaming zum Verarbeiten von Teilergebnissen verwenden.
Wenn Sie die Antwort streamen möchten, rufen Sie generateContentStream
auf.
Beispiel ansehen: Generierten Text aus reiner Texteingabe streamen
Du kannst generateContentStream()
aufrufen, um generierten Text aus einer reinen Texteingabe zu streamen.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
let contentStream = try model.generateContentStream(prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Du kannst generateContentStream()
aufrufen, um generierten Text aus einer reinen Texteingabe zu streamen.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
// Provide a prompt that includes only text
val prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream and pass in the prompt
var response = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
print(chunk.text)
response += chunk.text
}
Du kannst generateContentStream()
aufrufen, um generierten Text aus einer reinen Texteingabe zu streamen.
Publisher
-Typ aus der Reactive Streams-Bibliothek zurück.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To stream generated text output, call generateContentStream with the text input
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
// Subscribe to partial results from the response
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
fullResponse[0] += chunk;
}
@Override
public void onComplete() {
System.out.println(fullResponse[0]);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) { }
});
Du kannst generateContentStream()
aufrufen, um generierten Text aus einer reinen Texteingabe zu streamen.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
const result = await model.generateContentStream(prompt);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
console.log('aggregated response: ', await result.response);
}
run();
Du kannst generateContentStream()
aufrufen, um generierten Text aus einer reinen Texteingabe zu streamen.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To stream generated text output, call generateContentStream with the text input
final response = model.generateContentStream(prompt);
await for (final chunk in response) {
print(chunk.text);
}
Du kannst GenerateContentStreamAsync()
aufrufen, um generierten Text aus einer reinen Texteingabe zu streamen.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";
// To stream generated text output, call GenerateContentStreamAsync with the text input
var responseStream = model.GenerateContentStreamAsync(prompt);
await foreach (var response in responseStream) {
if (!string.IsNullOrWhiteSpace(response.Text)) {
UnityEngine.Debug.Log(response.Text);
}
}
Beispiel ansehen: Generierten Text aus multimodaler Eingabe streamen
Sie können generateContentStream()
aufrufen, um generierten Text aus multimodaler Eingabe von Text und einem einzelnen Video zu streamen.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the video as `Data` with the appropriate MIME type
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To stream generated text output, call generateContentStream with the text and video
let contentStream = try model.generateContentStream(video, prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Sie können generateContentStream()
aufrufen, um generierten Text aus multimodaler Eingabe von Text und einem einzelnen Video zu streamen.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To stream generated text output, call generateContentStream with the prompt
var fullResponse = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
Log.d(TAG, chunk.text ?: "")
fullResponse += chunk.text
}
}
}
Sie können generateContentStream()
aufrufen, um generierten Text aus multimodaler Eingabe von Text und einem einzelnen Video zu streamen.
Publisher
-Typ aus der Reactive Streams-Bibliothek zurück.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To stream generated text output, call generateContentStream with the prompt
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
fullResponse[0] += chunk;
}
@Override
public void onComplete() {
System.out.println(fullResponse[0]);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) {
}
});
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Sie können generateContentStream()
aufrufen, um generierten Text aus multimodaler Eingabe von Text und einem einzelnen Video zu streamen.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To stream generated text output, call generateContentStream with the text and video
const result = await model.generateContentStream([prompt, videoPart]);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
}
run();
Sie können generateContentStream()
aufrufen, um generierten Text aus multimodaler Eingabe von Text und einem einzelnen Video zu streamen.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To stream generated text output, call generateContentStream with the text and image
final response = await model.generateContentStream([
Content.multi([prompt,videoPart])
]);
await for (final chunk in response) {
print(chunk.text);
}
Sie können GenerateContentStreamAsync()
aufrufen, um generierten Text aus multimodaler Eingabe von Text und einem einzelnen Video zu streamen.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To stream generated text output, call GenerateContentStreamAsync with the text and video
var responseStream = model.GenerateContentStreamAsync(new [] { video, prompt });
await foreach (var response in responseStream) {
if (!string.IsNullOrWhiteSpace(response.Text)) {
UnityEngine.Debug.Log(response.Text);
}
}
Anforderungen und Empfehlungen für Eingabebilddateien
Hinweis: Eine als Inline-Daten bereitgestellte Datei wird während der Übertragung in Base64 codiert, was die Größe der Anfrage erhöht. Wenn eine Anfrage zu groß ist, erhalten Sie den HTTP-Fehler 413.
Unter Unterstützte Eingabedateien und Anforderungen an die Vertex AI Gemini API finden Sie ausführliche Informationen zu folgenden Themen:
- Verschiedene Optionen zum Bereitstellen einer Datei in einer Anfrage (entweder inline oder mit der URL oder dem URI der Datei)
- Unterstützte Dateitypen
- Unterstützte MIME-Typen und deren Angabe
- Anforderungen und Best Practices für Dateien und multimodale Anfragen
Was können Sie sonst noch tun?
- Informationen zum Zählen von Tokens, bevor Sie lange Prompts an das Modell senden
- Richten Sie Cloud Storage for Firebase ein, damit Sie große Dateien in Ihre multimodalen Anfragen aufnehmen und eine besser verwaltete Lösung für die Bereitstellung von Dateien in Prompts haben können. Dateien können Bilder, PDFs, Videos und Audiodateien enthalten.
-
Überlegen Sie, wie Sie sich auf die Produktion vorbereiten können (siehe Checkliste für die Produktion). Dazu gehören:
- Firebase App Check einrichten, um die Gemini API vor Missbrauch durch nicht autorisierte Clients zu schützen.
- Firebase Remote Config einbinden, um Werte in Ihrer App (z. B. den Modellnamen) zu aktualisieren, ohne eine neue App-Version zu veröffentlichen.
Weitere Funktionen ausprobieren
- Unterhaltungen in mehreren Runden (Chat) erstellen
- Text aus nur Text-Prompts generieren
- Sie können sowohl aus Text- als auch aus multimodalen Prompts strukturierte Ausgabe (z. B. JSON) generieren.
- Bilder aus Text-Prompts generieren (Gemini oder Imagen)
- Verwenden Sie Funktionsaufrufe, um generative Modelle mit externen Systemen und Informationen zu verbinden.
Inhaltserstellung steuern
- Informationen zum Prompt-Design, einschließlich Best Practices, Strategien und Beispiel-Prompts.
- Konfigurieren Sie Modellparameter wie Temperatur und maximale Ausgabetokens (für Gemini) oder Seitenverhältnis und Personengenerierung (für Imagen).
- Mit den Sicherheitseinstellungen können Sie die Wahrscheinlichkeit anpassen, dass Sie Antworten erhalten, die als schädlich eingestuft werden könnten.
Weitere Informationen zu den unterstützten Modellen
Hier finden Sie Informationen zu den Modellen, die für verschiedene Anwendungsfälle verfügbar sind, sowie zu ihren Kontingenten und Preisen.Feedback zu Firebase AI Logic geben