Gemini मॉडल से, सिर्फ़ टेक्स्ट वाले प्रॉम्प्ट या कई तरह के प्रॉम्प्ट से टेक्स्ट जनरेट करने के लिए कहा जा सकता है. Firebase AI Logic का इस्तेमाल करने पर, सीधे अपने ऐप्लिकेशन से यह अनुरोध किया जा सकता है.
मल्टीमोडल प्रॉम्प्ट में कई तरह के इनपुट शामिल हो सकते हैं. जैसे, इमेज के साथ टेक्स्ट, PDF, सादा टेक्स्ट फ़ाइलें, ऑडियो, और वीडियो.
इस गाइड में, सिर्फ़ टेक्स्ट वाले प्रॉम्प्ट और फ़ाइल वाले बुनियादी मल्टीमोडल प्रॉम्प्ट से टेक्स्ट जनरेट करने का तरीका बताया गया है.
सिर्फ़ टेक्स्ट इनपुट के लिए कोड सैंपल पर जाएं अलग-अलग तरह के इनपुट के लिए कोड सैंपल पर जाएं
टेक्स्ट के साथ काम करने के अन्य विकल्पों के लिए, अन्य गाइड देखें स्ट्रक्चर्ड आउटपुट जनरेट करें मल्टी-टर्न चैट दोतरफ़ा स्ट्रीमिंग डिवाइस पर टेक्स्ट जनरेट करें टेक्स्ट से इमेज जनरेट करें |
शुरू करने से पहले
इस पेज पर, सेवा देने वाली कंपनी से जुड़ा कॉन्टेंट और कोड देखने के लिए, Gemini API पर क्लिक करें. |
अगर आपने अब तक ऐसा नहीं किया है, तो शुरू करने से जुड़ी गाइड पढ़ें. इसमें, Firebase प्रोजेक्ट सेट अप करने, अपने ऐप्लिकेशन को Firebase से कनेक्ट करने, SDK टूल जोड़ने, चुने गए Gemini API प्रोवाइडर के लिए बैकएंड सेवा को शुरू करने, और GenerativeModel
इंस्टेंस बनाने का तरीका बताया गया है.
हमारा सुझाव है कि अपने प्रॉम्प्ट की जांच करने और उन पर बार-बार काम करने के लिए, Google AI Studio का इस्तेमाल करें. इससे, जनरेट किया गया कोड स्निपेट भी मिल सकता है.
सिर्फ़ टेक्स्ट वाले इनपुट से टेक्स्ट जनरेट करना
इस सैंपल को आज़माने से पहले, अपने प्रोजेक्ट और ऐप्लिकेशन को सेट अप करने के लिए, इस गाइड का शुरू करने से पहले सेक्शन पूरा करें. इस सेक्शन में, आपको अपनी पसंद के Gemini API सेवा देने वाली कंपनी के लिए बटन पर भी क्लिक करना होगा, ताकि आपको इस पेज पर सेवा देने वाली कंपनी से जुड़ा कॉन्टेंट दिखे. |
Gemini मॉडल से टेक्स्ट जनरेट करने के लिए कहा जा सकता है. इसके लिए, सिर्फ़ टेक्स्ट वाले इनपुट का इस्तेमाल करें.
Swift
सिर्फ़ टेक्स्ट वाले इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")
Kotlin
सिर्फ़ टेक्स्ट वाले इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
सिर्फ़ टेक्स्ट वाले इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
ListenableFuture
दिखाते हैं.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
सिर्फ़ टेक्स्ट वाले इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
सिर्फ़ टेक्स्ट वाले इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
Unity
सिर्फ़ टेक्स्ट वाले इनपुट से टेक्स्ट जनरेट करने के लिए, GenerateContentAsync()
को कॉल किया जा सकता है.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";
// To generate text output, call GenerateContentAsync with the text input
var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
टेक्स्ट और फ़ाइल (मल्टीमोडल) इनपुट से टेक्स्ट जनरेट करना
इस सैंपल को आज़माने से पहले, अपने प्रोजेक्ट और ऐप्लिकेशन को सेट अप करने के लिए, इस गाइड का शुरू करने से पहले सेक्शन पूरा करें. इस सेक्शन में, आपको अपनी पसंद के Gemini API सेवा देने वाली कंपनी के लिए बटन पर भी क्लिक करना होगा, ताकि आपको इस पेज पर सेवा देने वाली कंपनी से जुड़ा कॉन्टेंट दिखे. |
Gemini मॉडल से टेक्स्ट जनरेट करने के लिए कहा जा सकता है. इसके लिए, टेक्स्ट और फ़ाइल के साथ प्रॉम्प्ट दें. साथ ही, हर इनपुट फ़ाइल का mimeType
और फ़ाइल की जानकारी दें. इस पेज पर आगे, इनपुट फ़ाइलों के लिए ज़रूरी शर्तें और सुझाव देखें.
यहां दिए गए उदाहरण में, इनलाइन डेटा (Base64 में एन्कोड की गई फ़ाइल) के तौर पर दी गई एक वीडियो फ़ाइल का विश्लेषण करके, फ़ाइल इनपुट से टेक्स्ट जनरेट करने का बुनियादी तरीका बताया गया है.
ध्यान दें कि इस उदाहरण में, फ़ाइल को इनलाइन में उपलब्ध कराने का तरीका बताया गया है. हालांकि, एसडीके में YouTube का यूआरएल उपलब्ध कराने की सुविधा भी उपलब्ध है.
Swift
टेक्स्ट और वीडियो फ़ाइलों के मल्टीमोडल इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Kotlin
टेक्स्ट और वीडियो फ़ाइलों के मल्टीमोडल इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Java
टेक्स्ट और वीडियो फ़ाइलों के मल्टीमोडल इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
ListenableFuture
दिखाते हैं.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
टेक्स्ट और वीडियो फ़ाइलों के मल्टीमोडल इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
टेक्स्ट और वीडियो फ़ाइलों के मल्टीमोडल इनपुट से टेक्स्ट जनरेट करने के लिए, generateContent()
को कॉल किया जा सकता है.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
Unity
टेक्स्ट और वीडियो फ़ाइलों के मल्टीमोडल इनपुट से टेक्स्ट जनरेट करने के लिए, GenerateContentAsync()
को कॉल किया जा सकता है.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
अपने इस्तेमाल के उदाहरण और ऐप्लिकेशन के हिसाब से सही मॉडल चुनने का तरीका जानें.
जवाब स्ट्रीम करना
इस सैंपल को आज़माने से पहले, अपने प्रोजेक्ट और ऐप्लिकेशन को सेट अप करने के लिए, इस गाइड का शुरू करने से पहले सेक्शन पूरा करें. इस सेक्शन में, आपको अपनी पसंद के Gemini API सेवा देने वाली कंपनी के लिए बटन पर भी क्लिक करना होगा, ताकि आपको इस पेज पर सेवा देने वाली कंपनी से जुड़ा कॉन्टेंट दिखे. |
मॉडल जनरेशन के पूरे नतीजे का इंतज़ार किए बिना, तेज़ी से इंटरैक्शन हासिल किए जा सकते हैं. इसके बजाय, कुछ नतीजों को मैनेज करने के लिए स्ट्रीमिंग का इस्तेमाल करें.
जवाब को स्ट्रीम करने के लिए, generateContentStream
को कॉल करें.
इनपुट इमेज फ़ाइलों के लिए ज़रूरी शर्तें और सुझाव
ध्यान दें कि इनलाइन डेटा के तौर पर दी गई फ़ाइल को ट्रांज़िट में Base64 में एन्कोड किया जाता है. इससे अनुरोध का साइज़ बढ़ जाता है. अगर अनुरोध बहुत बड़ा है, तो आपको एचटीटीपी 413 गड़बड़ी का मैसेज मिलता है.
इनके बारे में ज़्यादा जानकारी पाने के लिए, Vertex AI Gemini API के लिए काम करने वाली इनपुट फ़ाइलें और ज़रूरी शर्तें देखें:
- अनुरोध में फ़ाइल देने के अलग-अलग विकल्प (इनलाइन या फ़ाइल के यूआरएल या यूआरआई का इस्तेमाल करके)
- समर्थित फ़ाइल प्रकार
- इस्तेमाल किए जा सकने वाले MIME टाइप और उन्हें बताने का तरीका
- फ़ाइलों और अलग-अलग तरीकों से किए जाने वाले अनुरोधों के लिए ज़रूरी शर्तें और सबसे सही तरीके
तुम और क्या कर सकती हो?
- मॉडल को लंबे प्रॉम्प्ट भेजने से पहले, टोकन की गिनती करने का तरीका जानें.
- Cloud Storage for Firebase को सेट अप करें, ताकि आप अपने कई मोड वाले अनुरोधों में बड़ी फ़ाइलें शामिल कर सकें. साथ ही, प्रॉम्प्ट में फ़ाइलें उपलब्ध कराने के लिए, बेहतर तरीके से मैनेज किया जा सके. फ़ाइलों में इमेज, PDF, वीडियो, और ऑडियो शामिल हो सकते हैं.
-
प्रोडक्शन की तैयारी शुरू करें (प्रोडक्शन की चेकलिस्ट देखें). इसमें ये चीज़ें शामिल हैं:
- Gemini API को बिना अनुमति वाले क्लाइंट के गलत इस्तेमाल से बचाने के लिए, Firebase App Check सेट अप करना
- Firebase Remote Config को इंटिग्रेट करना ऐप्लिकेशन का नया वर्शन रिलीज़ किए बिना, अपने ऐप्लिकेशन में वैल्यू (जैसे, मॉडल का नाम) अपडेट करने के लिए.
अन्य सुविधाएं आज़माएं
- कई बार बातचीत करने की सुविधा (चैट) बनाएं.
- सिर्फ़ टेक्स्ट वाले प्रॉम्प्ट से टेक्स्ट जनरेट करें.
- टेक्स्ट और मल्टीमोडल प्रॉम्प्ट, दोनों से स्ट्रक्चर्ड आउटपुट (जैसे, JSON) जनरेट करें.
- टेक्स्ट प्रॉम्प्ट से इमेज जनरेट करें.
- जनरेटिव मॉडल को बाहरी सिस्टम और जानकारी से कनेक्ट करने के लिए, फ़ंक्शन कॉल का इस्तेमाल करें.
कॉन्टेंट जनरेशन को कंट्रोल करने का तरीका जानें
- प्रॉम्प्ट के डिज़ाइन को समझना. इसमें सबसे सही तरीके, रणनीतियां, और प्रॉम्प्ट के उदाहरण शामिल हैं.
- मॉडल पैरामीटर कॉन्फ़िगर करें. जैसे, तापमान और ज़्यादा से ज़्यादा आउटपुट टोकन (Gemini के लिए) या आसपेक्ट रेशियो और व्यक्ति जनरेशन (Imagen के लिए).
- सुरक्षा सेटिंग का इस्तेमाल करें, ताकि आपको ऐसे जवाब न मिलें जो नुकसान पहुंचा सकते हैं.
इस्तेमाल किए जा सकने वाले मॉडल के बारे में ज़्यादा जानें
अलग-अलग कामों के लिए उपलब्ध मॉडल, उनके कोटे, और कीमत के बारे में जानें.Firebase AI Logic के साथ अपने अनुभव के बारे में सुझाव/राय दें या शिकायत करें