Puedes pedirle a un modelo de Gemini que analice los archivos de audio que proporciones intercalados (codificados en base64) o a través de una URL. Cuando usas Firebase AI Logic, puedes realizar esta solicitud directamente desde tu app.
Con esta función, puedes hacer lo siguiente:
- Describir, resumir o responder preguntas sobre el contenido de audio
- Transcribe contenido de audio
- Cómo analizar segmentos específicos de audio con marcas de tiempo
Ir a las muestras de código Ir al código de las respuestas transmitidas
Consulta otras guías para obtener opciones adicionales para trabajar con audio Genera resultados estructurados Chat de varios turnos Transmisión bidireccional |
Antes de comenzar
Haz clic en tu proveedor de Gemini API para ver el contenido y el código específicos del proveedor en esta página. |
Si aún no lo has hecho, completa la
guía de introducción, en la que se describe cómo
configurar tu proyecto de Firebase, conectar tu app a Firebase, agregar el SDK,
inicializar el servicio de backend para el proveedor de Gemini API que elijas y
crear una instancia de GenerativeModel
.
Para probar y iterar tus instrucciones y hasta conseguir un fragmento de código generado, te recomendamos usar Google AI Studio.
Genera texto a partir de archivos de audio (codificados en Base64)
Antes de probar esta muestra, completa la sección Antes de comenzar de esta guía para configurar tu proyecto y app. En esa sección, también harás clic en un botón del proveedor de Gemini API que elijas para ver contenido específico del proveedor en esta página. |
Puedes pedirle a un modelo Gemini que genere texto con instrucciones de texto y audio, y proporcionar el mimeType
del archivo de entrada y el archivo en sí. Más adelante en esta página, encontrarás los requisitos y las recomendaciones para los archivos de entrada.
Swift
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto y un solo archivo de audio.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Provide the audio as `Data`
guard let audioData = try? Data(contentsOf: audioURL) else {
print("Error loading audio data.")
return // Or handle the error appropriately
}
// Specify the appropriate audio MIME type
let audio = InlineDataPart(data: audioData, mimeType: "audio/mpeg")
// Provide a text prompt to include with the audio
let prompt = "Transcribe what's said in this audio recording."
// To generate text output, call `generateContent` with the audio and text prompt
let response = try await model.generateContent(audio, prompt)
// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")
Kotlin
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto y un solo archivo de audio.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
val inputStream = contentResolver.openInputStream(audioUri)
if (inputStream != null) { // Check if the audio loaded successfully
inputStream.use { stream ->
val bytes = stream.readBytes()
// Provide a prompt that includes the audio specified above and text
val prompt = content {
inlineData(bytes, "audio/mpeg") // Specify the appropriate audio MIME type
text("Transcribe what's said in this audio recording.")
}
// To generate text output, call `generateContent` with the prompt
val response = generativeModel.generateContent(prompt)
// Log the generated text, handling the case where it might be null
Log.d(TAG, response.text?: "")
}
} else {
Log.e(TAG, "Error getting input stream for audio.")
// Handle the error appropriately
}
Java
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto y un solo archivo de audio.
ListenableFuture
.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(audioUri)) {
File audioFile = new File(new URI(audioUri.toString()));
int audioSize = (int) audioFile.length();
byte audioBytes = new byte[audioSize];
if (stream != null) {
stream.read(audioBytes, 0, audioBytes.length);
stream.close();
// Provide a prompt that includes the audio specified above and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "audio/mpeg") // Specify the appropriate audio MIME type
.addText("Transcribe what's said in this audio recording.")
.build();
// To generate text output, call `generateContent` with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String text = result.getText();
Log.d(TAG, (text == null) ? "" : text);
}
@Override
public void onFailure(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
}, executor);
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the audio file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid audio file", e);
}
Web
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto y un solo archivo de audio.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(','));
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the audio
const prompt = "Transcribe what's said in this audio recording.";
// Prepare audio for input
const fileInputEl = document.querySelector("input[type=file]");
const audioPart = await fileToGenerativePart(fileInputEl.files);
// To generate text output, call `generateContent` with the text and audio
const result = await model.generateContent([prompt, audioPart]);
// Log the generated text, handling the case where it might be undefined
console.log(result.response.text() ?? "No text in response.");
}
run();
Dart
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto y un solo archivo de audio.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the audio
final prompt = TextPart("Transcribe what's said in this audio recording.");
// Prepare audio for input
final audio = await File('audio0.mp3').readAsBytes();
// Provide the audio as `Data` with the appropriate audio MIME type
final audioPart = InlineDataPart('audio/mpeg', audio);
// To generate text output, call `generateContent` with the text and audio
final response = await model.generateContent([
Content.multi([prompt,audioPart])
]);
// Print the generated text
print(response.text);
Unity
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto y un solo archivo de audio.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Provide a text prompt to include with the audio
var prompt = ModelContent.Text("Transcribe what's said in this audio recording.");
// Provide the audio as `data` with the appropriate audio MIME type
var audio = ModelContent.InlineData("audio/mpeg",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "audio0.mp3")));
// To generate text output, call `GenerateContentAsync` with the text and audio
var response = await model.GenerateContentAsync(new [] { prompt, audio });
// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Aprende a elegir un modelo apropiado para tu caso de uso y tu app.
Transmite la respuesta
Antes de probar esta muestra, completa la sección Antes de comenzar de esta guía para configurar tu proyecto y app. En esa sección, también harás clic en un botón del proveedor de Gemini API que elijas para ver contenido específico del proveedor en esta página. |
Puedes lograr interacciones más rápidas si no esperas a que se genere todo el resultado del modelo y, en su lugar, usas la transmisión para controlar los resultados parciales.
Para transmitir la respuesta, llama a generateContentStream
.
Requisitos y recomendaciones para los archivos de audio de entrada
Ten en cuenta que un archivo proporcionado como datos intercalados se codifica en base64 en tránsito, lo que aumenta el tamaño de la solicitud. Recibirás un error HTTP 413 si una solicitud es demasiado grande.
Consulta "Archivos de entrada compatibles y requisitos para Vertex AI Gemini API" para obtener información detallada sobre lo siguiente:
- Diferentes opciones para proporcionar un archivo en una solicitud (ya sea intercalado o con la URL o el URI del archivo)
- Requisitos y prácticas recomendadas para los archivos de audio
Tipos de MIME de audio admitidos
Los modelos multimodales de Gemini admiten los siguientes tipos de MIME de audio:
Tipo de MIME de audio | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
AAC - audio/aac |
||
FLAC - audio/flac |
||
MP3 - audio/mp3 |
||
MPA - audio/m4a |
||
MPEG - audio/mpeg |
||
MPGA - audio/mpga |
||
MP4 - audio/mp4 |
||
OPUS - audio/opus |
||
PCM - audio/pcm |
||
WAV - audio/wav |
||
WEBM - audio/webm |
Límites por solicitud
Puedes incluir un máximo de
¿Qué más puedes hacer?
- Obtén más información para contar tokens antes de enviar instrucciones largas al modelo.
- Configura Cloud Storage for Firebase para que puedas incluir archivos grandes en tus solicitudes multimodales y tener una solución más administrada para proporcionar archivos en instrucciones. Los archivos pueden incluir imágenes, archivos PDF, videos y audio.
-
Comienza a pensar en prepararte para la producción (consulta la
lista de tareas de producción),
lo que incluye lo siguiente:
- Configurar Firebase App Check para proteger el Gemini API del abuso de clientes no autorizados
- Integra Firebase Remote Config para actualizar los valores de tu app (como el nombre del modelo) sin lanzar una versión nueva de la app.
Prueba otras funciones
- Crea conversaciones de varios turnos (chat).
- Generar texto a partir de instrucciones de solo texto
- Genera resultados estructurados (como JSON) a partir de instrucciones multimodales y de texto.
- Genera imágenes a partir de instrucciones de texto.
- Usa las llamadas a función para conectar los modelos generativos a sistemas y datos externos.
Aprende a controlar la generación de contenido
- Comprende el diseño de instrucciones, incluidas las prácticas recomendadas, las estrategias y los ejemplos de instrucciones.
- Configura los parámetros del modelo, como la temperatura y la cantidad máxima de tokens de salida (para Gemini) o la relación de aspecto y la generación de personas (para Imagen).
- Usa la configuración de seguridad para ajustar la probabilidad de recibir respuestas que se puedan considerar dañinas.
Más información sobre los modelos compatibles
Obtén información sobre los modelos disponibles para varios casos de uso y sus cuotas y precios.Envía comentarios sobre tu experiencia con Firebase AI Logic