Puedes pedirle a un modelo Gemini que analice los archivos de imagen que proporciones de forma intercalada (codificados en base64) o a través de una URL. Cuando usas Firebase AI Logic, puedes realizar esta solicitud directamente desde tu app.
Con esta capacidad, puedes hacer lo siguiente:
- Crear leyendas o responder preguntas sobre imágenes
- Escribe un cuento o un poema sobre una imagen
- Detecta objetos en una imagen y devuelve las coordenadas de sus cuadros delimitadores
- Etiquetar o categorizar un conjunto de imágenes según el sentimiento, el estilo o alguna otra característica
Ir a muestras de código Ir al código de respuestas transmitidas
Consulta otras guías para obtener más opciones para trabajar con imágenes Genera resultados estructurados Chat de varios turnos Analiza imágenes en el dispositivo Genera imágenes |
Antes de comenzar
Haz clic en tu proveedor de Gemini API para ver el contenido y el código específicos del proveedor en esta página. |
Si aún no lo has hecho, completa la guía de introducción, en la que se describe cómo configurar tu proyecto de Firebase, conectar tu app a Firebase, agregar el SDK, inicializar el servicio de backend para el proveedor de Gemini API que elijas y crear una instancia de GenerativeModel
.
Para probar y, luego, iterar tus instrucciones, e incluso obtener un fragmento de código generado, te recomendamos usar Google AI Studio.
Genera texto a partir de archivos de imagen (codificados en base64)
Antes de probar esta muestra, completa la sección
Antes de comenzar de esta guía
para configurar tu proyecto y tu app. En esa sección, también harás clic en un botón para el proveedor de Gemini API que elijas, de modo que veas contenido específico del proveedor en esta página. |
Puedes pedirle a un modelo de Gemini que genere texto proporcionándole instrucciones con texto e imágenes, y proporcionando el mimeType
de cada archivo de entrada y el archivo en sí. Más adelante en esta página, encontrarás los requisitos y las recomendaciones para los archivos de entrada.
Swift
Puedes llamar a generateContent()
para generar texto a partir de entradas multimodales de texto e imágenes.
Entrada de un solo archivo
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
guard let image = UIImage(systemName: "bicycle") else { fatalError() }
// Provide a text prompt to include with the image
let prompt = "What's in this picture?"
// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image, prompt)
print(response.text ?? "No text in response.")
Entrada de varios archivos
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
guard let image1 = UIImage(systemName: "car") else { fatalError() }
guard let image2 = UIImage(systemName: "car.2") else { fatalError() }
// Provide a text prompt to include with the images
let prompt = "What's different between these pictures?"
// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image1, image2, prompt)
print(response.text ?? "No text in response.")
Kotlin
Puedes llamar a generateContent()
para generar texto a partir de entradas multimodales de texto e imágenes.
Entrada de un solo archivo
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
// Loads an image from the app/res/drawable/ directory
val bitmap: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
// Provide a prompt that includes the image specified above and text
val prompt = content {
image(bitmap)
text("What developer tool is this mascot from?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)
Entrada de varios archivos
En Kotlin, los métodos de este SDK son funciones de suspensión y deben llamarse desde un alcance de corrutina.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
// Loads an image from the app/res/drawable/ directory
val bitmap1: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
val bitmap2: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky_eats_pizza)
// Provide a prompt that includes the images specified above and text
val prompt = content {
image(bitmap1)
image(bitmap2)
text("What is different between these pictures?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
Puedes llamar a generateContent()
para generar texto a partir de entradas multimodales de texto e imágenes.
ListenableFuture
.
Entrada de un solo archivo
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
// Provide a prompt that includes the image specified above and text
Content content = new Content.Builder()
.addImage(bitmap)
.addText("What developer tool is this mascot from?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Entrada de varios archivos
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
Bitmap bitmap1 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
Bitmap bitmap2 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky_eats_pizza);
// Provide a prompt that includes the images specified above and text
Content prompt = new Content.Builder()
.addImage(bitmap1)
.addImage(bitmap2)
.addText("What's different between these pictures?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
Puedes llamar a generateContent()
para generar texto a partir de entradas multimodales de texto e imágenes.
Entrada de un solo archivo
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the image
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and image
const result = await model.generateContent([prompt, imagePart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Entrada de varios archivos
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the images
const prompt = "What's different between these pictures?";
// Prepare images for input
const fileInputEl = document.querySelector("input[type=file]");
const imageParts = await Promise.all(
[...fileInputEl.files].map(fileToGenerativePart)
);
// To generate text output, call generateContent with the text and images
const result = await model.generateContent([prompt, ...imageParts]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Puedes llamar a generateContent()
para generar texto a partir de entradas multimodales de texto e imágenes.
Entrada de un solo archivo
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the image
final prompt = TextPart("What's in the picture?");
// Prepare images for input
final image = await File('image0.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);
// To generate text output, call generateContent with the text and image
final response = await model.generateContent([
Content.multi([prompt,imagePart])
]);
print(response.text);
Entrada de varios archivos
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
final (firstImage, secondImage) = await (
File('image0.jpg').readAsBytes(),
File('image1.jpg').readAsBytes()
).wait;
// Provide a text prompt to include with the images
final prompt = TextPart("What's different between these pictures?");
// Prepare images for input
final imageParts = [
InlineDataPart('image/jpeg', firstImage),
InlineDataPart('image/jpeg', secondImage),
];
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...imageParts])
]);
print(response.text);
Unity
Puedes llamar a GenerateContentAsync()
para generar texto a partir de entradas multimodales de texto e imágenes.
Entrada de un solo archivo
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Convert a Texture2D into InlineDataParts
var grayImage = ModelContent.InlineData("image/png",
UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.grayTexture));
// Provide a text prompt to include with the image
var prompt = ModelContent.Text("What's in this picture?");
// To generate text output, call GenerateContentAsync and pass in the prompt
var response = await model.GenerateContentAsync(new [] { grayImage, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Entrada de varios archivos
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Convert Texture2Ds into InlineDataParts
var blackImage = ModelContent.InlineData("image/png",
UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.blackTexture));
var whiteImage = ModelContent.InlineData("image/png",
UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.whiteTexture));
// Provide a text prompt to include with the images
var prompt = ModelContent.Text("What's different between these pictures?");
// To generate text output, call GenerateContentAsync and pass in the prompt
var response = await model.GenerateContentAsync(new [] { blackImage, whiteImage, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Aprende a elegir un modelo adecuados para tu caso de uso y tu app.
Transmite la respuesta
Antes de probar esta muestra, completa la sección
Antes de comenzar de esta guía
para configurar tu proyecto y tu app. En esa sección, también harás clic en un botón para el proveedor de Gemini API que elijas, de modo que veas contenido específico del proveedor en esta página. |
Puedes lograr interacciones más rápidas sin esperar el resultado completo de la generación del modelo y, en cambio, usar la transmisión para controlar los resultados parciales.
Para transmitir la respuesta, llama a generateContentStream
.
Requisitos y recomendaciones para los archivos de imágenes de entrada
Ten en cuenta que un archivo proporcionado como datos intercalados se codifica en base64 durante la transmisión, lo que aumenta el tamaño de la solicitud. Recibirás un error HTTP 413 si una solicitud es demasiado grande.
Consulta "Archivos de entrada y requisitos compatibles para Vertex AI Gemini API" para obtener información detallada sobre lo siguiente:
- Diferentes opciones para proporcionar un archivo en una solicitud (ya sea de forma intercalada o con la URL del archivo)
- Requisitos y prácticas recomendadas para los archivos de imágenes
Tipos de MIME de imágenes admitidos
Los modelos multimodales de Gemini admiten los siguientes tipos de MIME de imágenes:
Tipo MIME de imagen | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
PNG - image/png |
||
JPEG - image/jpeg |
||
WebP - image/webp |
Límites por solicitud
No hay un límite específico para la cantidad de píxeles en una imagen. Sin embargo, las imágenes más grandes se reducen y se rellenan para adaptarse a una resolución máxima de 3,072 x 3,072, a la vez que conservan su relación de aspecto original.
Esta es la cantidad máxima de archivos de imagen permitidos en una solicitud de instrucciones:
- Gemini 2.0 Flash y Gemini 2.0 Flash‑Lite: 3,000 imágenes
¿Qué más puedes hacer?
- Aprende a contar tokens antes de enviar instrucciones largas al modelo.
- Configura Cloud Storage for Firebase para poder incluir archivos grandes en tus solicitudes multimodales y tener una solución más administrada para proporcionar archivos en las instrucciones. Los archivos pueden incluir imágenes, PDFs, videos y audio.
-
Comienza a pensar en la preparación para la producción (consulta la lista de tareas de producción), que incluye lo siguiente:
- Configura Firebase App Check para proteger Gemini API contra el abuso de clientes no autorizados.
- Integra Firebase Remote Config para actualizar valores en tu app (como el nombre del modelo) sin lanzar una nueva versión de la app.
Prueba otras capacidades
- Crea conversaciones de varios turnos (chat).
- Generar texto a partir de instrucciones solo de texto
- Genera resultados estructurados (como JSON) a partir de instrucciones tanto de texto como multimodales.
- Generar imágenes a partir de instrucciones de texto (Gemini o Imagen)
- Usa la llamada a función para conectar modelos generativos a sistemas e información externos.
Más información para controlar la generación de contenido
- Comprende el diseño de instrucciones, incluidas las prácticas recomendadas, las estrategias y los ejemplos de instrucciones.
- Configura los parámetros del modelo, como la temperatura y la cantidad máxima de tokens de salida (para Gemini) o la relación de aspecto y la generación de personas (para Imagen).
- Usar la configuración de seguridad para ajustar la probabilidad de obtener respuestas que se puedan considerar dañinas
Más información sobre los modelos compatibles
Obtén información sobre los modelos disponibles para diversos casos de uso, sus cuotas y sus precios.Envía comentarios sobre tu experiencia con Firebase AI Logic