Puedes pedirle a un modelo de Gemini que analice los archivos de imagen que proporciones intercalados (codificados en base64) o a través de una URL. Cuando usas Firebase AI Logic, puedes realizar esta solicitud directamente desde tu app.
Con esta función, puedes hacer lo siguiente:
- Crear leyendas o responder preguntas sobre imágenes
- Escribe un cuento corto o un poema sobre una imagen
- Detecta objetos en una imagen y muestra las coordenadas del cuadro delimitador
- Etiquetar o categorizar un conjunto de imágenes según el sentimiento, el estilo o cualquier otra característica
Ir a las muestras de código Ir al código de las respuestas transmitidas
Consulta otras guías para obtener opciones adicionales para trabajar con imágenes Generar resultados estructurados Chat de varios turnos Analizar imágenes en el dispositivo Generar imágenes |
Antes de comenzar
Haz clic en tu proveedor de Gemini API para ver el contenido y el código específicos del proveedor en esta página. |
Si aún no lo has hecho, completa la
guía de introducción, en la que se describe cómo
configurar tu proyecto de Firebase, conectar tu app a Firebase, agregar el SDK,
inicializar el servicio de backend para el proveedor de Gemini API que elijas y
crear una instancia de GenerativeModel
.
Para probar y iterar tus instrucciones y hasta conseguir un fragmento de código generado, te recomendamos usar Google AI Studio.
Genera texto a partir de archivos de imagen (codificados en base64)
Antes de probar esta muestra, completa la sección Antes de comenzar de esta guía para configurar tu proyecto y app. En esa sección, también harás clic en un botón del proveedor de Gemini API que elijas para ver contenido específico del proveedor en esta página. |
Puedes pedirle a un modelo de Gemini que genere texto con instrucciones de texto e imágenes, y proporcionar el mimeType
de cada archivo de entrada y el archivo en sí. Más adelante en esta página, encontrarás los requisitos y las recomendaciones para los archivos de entrada.
Swift
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto e imágenes.
Entrada de un solo archivo
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
guard let image = UIImage(systemName: "bicycle") else { fatalError() }
// Provide a text prompt to include with the image
let prompt = "What's in this picture?"
// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image, prompt)
print(response.text ?? "No text in response.")
Entrada de varios archivos
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
guard let image1 = UIImage(systemName: "car") else { fatalError() }
guard let image2 = UIImage(systemName: "car.2") else { fatalError() }
// Provide a text prompt to include with the images
let prompt = "What's different between these pictures?"
// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image1, image2, prompt)
print(response.text ?? "No text in response.")
Kotlin
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto e imágenes.
Entrada de un solo archivo
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
// Loads an image from the app/res/drawable/ directory
val bitmap: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
// Provide a prompt that includes the image specified above and text
val prompt = content {
image(bitmap)
text("What developer tool is this mascot from?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)
Entrada de varios archivos
En Kotlin, los métodos de este SDK son funciones de suspensión y se deben llamar desde un alcance de corrutinas.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
// Loads an image from the app/res/drawable/ directory
val bitmap1: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
val bitmap2: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky_eats_pizza)
// Provide a prompt that includes the images specified above and text
val prompt = content {
image(bitmap1)
image(bitmap2)
text("What is different between these pictures?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto e imágenes.
ListenableFuture
.
Entrada de un solo archivo
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
// Provide a prompt that includes the image specified above and text
Content content = new Content.Builder()
.addImage(bitmap)
.addText("What developer tool is this mascot from?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Entrada de varios archivos
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
Bitmap bitmap1 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
Bitmap bitmap2 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky_eats_pizza);
// Provide a prompt that includes the images specified above and text
Content prompt = new Content.Builder()
.addImage(bitmap1)
.addImage(bitmap2)
.addText("What's different between these pictures?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto e imágenes.
Entrada de un solo archivo
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the image
const prompt = "What's different between these pictures?";
const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and image
const result = await model.generateContent([prompt, imagePart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Entrada de varios archivos
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the images
const prompt = "What's different between these pictures?";
// Prepare images for input
const fileInputEl = document.querySelector("input[type=file]");
const imageParts = await Promise.all(
[...fileInputEl.files].map(fileToGenerativePart)
);
// To generate text output, call generateContent with the text and images
const result = await model.generateContent([prompt, ...imageParts]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto e imágenes.
Entrada de un solo archivo
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the image
final prompt = TextPart("What's in the picture?");
// Prepare images for input
final image = await File('image0.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);
// To generate text output, call generateContent with the text and image
final response = await model.generateContent([
Content.multi([prompt,imagePart])
]);
print(response.text);
Entrada de varios archivos
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
final (firstImage, secondImage) = await (
File('image0.jpg').readAsBytes(),
File('image1.jpg').readAsBytes()
).wait;
// Provide a text prompt to include with the images
final prompt = TextPart("What's different between these pictures?");
// Prepare images for input
final imageParts = [
InlineDataPart('image/jpeg', firstImage),
InlineDataPart('image/jpeg', secondImage),
];
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...imageParts])
]);
print(response.text);
Unity
Puedes llamar a generateContent()
para generar texto a partir de una entrada multimodal de texto e imágenes.
Entrada de un solo archivo
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Convert a Texture2D into InlineDataParts
var grayImage = ModelContent.InlineData("image/png",
UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.grayTexture));
// Provide a text prompt to include with the image
var prompt = ModelContent.Text("What's in this picture?");
// To generate text output, call GenerateContentAsync and pass in the prompt
var response = await model.GenerateContentAsync(new [] { grayImage, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Entrada de varios archivos
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Convert Texture2Ds into InlineDataParts
var blackImage = ModelContent.InlineData("image/png",
UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.blackTexture));
var whiteImage = ModelContent.InlineData("image/png",
UnityEngine.ImageConversion.EncodeToPNG(UnityEngine.Texture2D.whiteTexture));
// Provide a text prompt to include with the images
var prompt = ModelContent.Text("What's different between these pictures?");
// To generate text output, call GenerateContentAsync and pass in the prompt
var response = await model.GenerateContentAsync(new [] { blackImage, whiteImage, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Aprende a elegir un modelo apropiado para tu caso de uso y tu app.
Transmite la respuesta
Antes de probar esta muestra, completa la sección Antes de comenzar de esta guía para configurar tu proyecto y app. En esa sección, también harás clic en un botón del proveedor de Gemini API que elijas para ver contenido específico del proveedor en esta página. |
Puedes lograr interacciones más rápidas si no esperas a que se genere todo el resultado del modelo y, en su lugar, usas la transmisión para controlar los resultados parciales.
Para transmitir la respuesta, llama a generateContentStream
.
Requisitos y recomendaciones para los archivos de imagen de entrada
Ten en cuenta que un archivo proporcionado como datos intercalados se codifica en base64 en tránsito, lo que aumenta el tamaño de la solicitud. Recibirás un error HTTP 413 si una solicitud es demasiado grande.
Consulta "Archivos de entrada compatibles y requisitos para Vertex AI Gemini API" para obtener información detallada sobre lo siguiente:
- Diferentes opciones para proporcionar un archivo en una solicitud (ya sea intercalado o con la URL del archivo)
- Requisitos y prácticas recomendadas para los archivos de imagen
Tipos de MIME de imagen admitidos
Los modelos multimodales de Gemini admiten los siguientes tipos de MIME de imagen:
Tipo MIME de imagen | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
PNG - image/png |
||
JPEG - image/jpeg |
||
WebP: image/webp |
Límites por solicitud
No hay un límite específico para la cantidad de píxeles en una imagen. Sin embargo, las imágenes más grandes se reducen y se rellenan para adaptarse a una resolución máxima de 3,072 x 3,072, a la vez que conservan su relación de aspecto original.
Esta es la cantidad máxima de archivos de imagen permitidos en una solicitud de instrucciones:
- Gemini 2.0 Flash y Gemini 2.0 Flash‑Lite: 3,000 imágenes
¿Qué más puedes hacer?
- Obtén más información para contar tokens antes de enviar instrucciones largas al modelo.
- Configura Cloud Storage for Firebase para que puedas incluir archivos grandes en tus solicitudes multimodales y tener una solución más administrada para proporcionar archivos en instrucciones. Los archivos pueden incluir imágenes, archivos PDF, videos y audio.
-
Comienza a pensar en prepararte para la producción (consulta la
lista de tareas de producción),
lo que incluye lo siguiente:
- Configurar Firebase App Check para proteger el Gemini API del abuso de clientes no autorizados
- Integra Firebase Remote Config para actualizar los valores de tu app (como el nombre del modelo) sin lanzar una versión nueva de la app.
Prueba otras funciones
- Crea conversaciones de varios turnos (chat).
- Generar texto a partir de instrucciones de solo texto
- Genera resultados estructurados (como JSON) a partir de instrucciones multimodales y de texto.
- Genera imágenes a partir de instrucciones de texto.
- Usa las llamadas a función para conectar los modelos generativos a sistemas y datos externos.
Aprende a controlar la generación de contenido
- Comprende el diseño de instrucciones, incluidas las prácticas recomendadas, las estrategias y los ejemplos de instrucciones.
- Configura los parámetros del modelo, como la temperatura y la cantidad máxima de tokens de salida (para Gemini) o la relación de aspecto y la generación de personas (para Imagen).
- Usa la configuración de seguridad para ajustar la probabilidad de recibir respuestas que se puedan considerar dañinas.
Más información sobre los modelos compatibles
Obtén información sobre los modelos disponibles para varios casos de uso y sus cuotas y precios.Envía comentarios sobre tu experiencia con Firebase AI Logic