您可以要求 Gemini 模型使用文字和圖片提示生成圖片,並編輯圖片。使用 Firebase AI Logic 時,您可以直接透過應用程式提出這項要求。
這項功能可讓您執行下列操作:
透過自然語言對話,以迴圈方式產生圖像,同時調整圖像並維持一致性和情境。
產生含有高品質文字算繪 (包括長字串) 的圖片。
產生文字與圖片交錯的輸出內容。例如,單一回合中含有文字和圖片的網誌文章。這項功能先前需要串連多個模型。
使用 Gemini 的全球知識和推理能力生成圖片。
如要查看支援的模式和功能完整清單 (以及提示範例),請參閱本頁後續內容。
如要輸出圖片,您必須使用 Gemini 模型 gemini-2.0-flash-preview-image-generation
,並在模型設定中加入 responseModalities: ["TEXT", "IMAGE"]
如需其他處理圖像的選項,請參閱其他指南 分析圖像 在裝置上分析圖像 產生結構化輸出內容 |
選擇 Gemini 和 Imagen 模式
Firebase AI Logic SDK 支援使用 Gemini 模型或 Imagen 模型生成圖片。對於多數用途,請先使用 Gemini,然後再選擇 Imagen 執行圖片品質至關重要的專門工作。
請注意,Firebase AI Logic SDK 尚不支援使用 Imagen 模型輸入圖片 (例如用於編輯)。因此,如果您想使用輸入圖片,可以改用 Gemini 模型。
如要執行下列操作,請選擇 Gemini:
- 運用世界知識和推理,產生與內容相關的圖片。
- 可將文字和圖片完美融合。
- 在長篇文字序列中嵌入準確的視覺效果。
- 在保留情境的情況下,以對話方式編輯圖片。
如要執行下列操作,請選擇 Imagen:
- 如要優先處理圖片品質、相片擬真度、藝術細節或特定風格 (例如印象派或動漫)。
- 如要明確指定產生圖片的顯示比例或格式。
事前準備
按一下您的 Gemini API 供應商,即可在本頁查看供應商專屬內容和程式碼。 |
如果您尚未完成,請參閱入門指南,瞭解如何設定 Firebase 專案、將應用程式連結至 Firebase、新增 SDK、為所選 Gemini API 供應器初始化後端服務,以及建立 GenerativeModel
例項。
如要測試並重複提示,甚至取得產生的程式碼片段,建議您使用 Google AI Studio。
支援這項功能的型號
gemini-2.0-flash-preview-image-generation
(而非 gemini-2.0-flash
) 支援 Gemini 的圖片輸出。
請注意,SDK 也支援使用 Imagen 模型產生圖片。
生成及編輯圖像
您可以使用 Gemini 模型生成及編輯圖片。
生成圖片 (僅輸入文字)
在嘗試這個範例之前,請先完成本指南「開始前」一節,設定專案和應用程式。 在該部分,您也需要點選所選Gemini API供應商的按鈕,才能在本頁面上看到供應商專屬內容。 |
您可以要求 Gemini 模型透過文字提示生成圖片。
請務必建立 GenerativeModel
例項、在模型設定中加入 responseModalities: ["TEXT", "IMAGE"]
generateContent
。
Swift
import FirebaseAI
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [.text, .image])
)
// Provide a text prompt instructing the model to generate an image
let prompt = "Generate an image of the Eiffel tower with fireworks in the background."
// To generate an image, call `generateContent` with the text input
let response = try await model.generateContent(prompt)
// Handle the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
Kotlin
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)
// Provide a text prompt instructing the model to generate an image
val prompt = "Generate an image of the Eiffel tower with fireworks in the background."
// To generate image output, call `generateContent` with the text input
val generatedImageAsBitmap = model.generateContent(prompt)
// Handle the generated image
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
Java
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
"gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
new GenerationConfig.Builder()
.setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
.build()
);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a text prompt instructing the model to generate an image
Content prompt = new Content.Builder()
.addText("Generate an image of the Eiffel Tower with fireworks in the background.")
.build();
// To generate an image, call `generateContent` with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
// iterate over all the parts in the first candidate in the result object
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
// The returned image as a bitmap
Bitmap generatedImageAsBitmap = imagePart.getImage();
break;
}
}
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
model: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: {
responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
},
});
// Provide a text prompt instructing the model to generate an image
const prompt = 'Generate an image of the Eiffel Tower with fireworks in the background.';
// To generate an image, call `generateContent` with the text input
const result = model.generateContent(prompt);
// Handle the generated image
try {
const inlineDataParts = result.response.inlineDataParts();
if (inlineDataParts?.[0]) {
const image = inlineDataParts[0].inlineData;
console.log(image.mimeType, image.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
Dart
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
model: 'gemini-2.0-flash-preview-image-generation',
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);
// Provide a text prompt instructing the model to generate an image
final prompt = [Content.text('Generate an image of the Eiffel Tower with fireworks in the background.')];
// To generate an image, call `generateContent` with the text input
final response = await model.generateContent(prompt);
if (response.inlineDataParts.isNotEmpty) {
final imageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
Unity
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: new GenerationConfig(
responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);
// Provide a text prompt instructing the model to generate an image
var prompt = "Generate an image of the Eiffel Tower with fireworks in the background.";
// To generate an image, call `GenerateContentAsync` with the text input
var response = await model.GenerateContentAsync(prompt);
var text = response.Text;
if (!string.IsNullOrWhiteSpace(text)) {
// Do something with the text
}
// Handle the generated image
var imageParts = response.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
foreach (var imagePart in imageParts) {
// Load the Image into a Unity Texture2D object
UnityEngine.Texture2D texture2D = new(2, 2);
if (texture2D.LoadImage(imagePart.Data.ToArray())) {
// Do something with the image
}
}
瞭解如何選擇適合用途和應用程式的模型。
生成圖像與文字交雜的內容
在嘗試這個範例之前,請先完成本指南「開始前」一節,設定專案和應用程式。 在該部分,您也需要點選所選Gemini API供應商的按鈕,才能在本頁面上看到供應商專屬內容。 |
您可以要求 Gemini 模型使用文字回覆生成交錯圖像。舉例來說,您可以產生圖片,顯示產生食譜的每個步驟可能的樣貌,以及步驟的操作說明,而且不必向模型或不同模型提出個別要求。
請務必建立 GenerativeModel
例項、在模型設定中加入 responseModalities: ["TEXT", "IMAGE"]
generateContent
。
Swift
import FirebaseAI
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [.text, .image])
)
// Provide a text prompt instructing the model to generate interleaved text and images
let prompt = """
Generate an illustrated recipe for a paella.
Create images to go alongside the text as you generate the recipe
"""
// To generate interleaved text and images, call `generateContent` with the text input
let response = try await model.generateContent(prompt)
// Handle the generated text and image
guard let candidate = response.candidates.first else {
fatalError("No candidates in response.")
}
for part in candidate.content.parts {
switch part {
case let textPart as TextPart:
// Do something with the generated text
let text = textPart.text
case let inlineDataPart as InlineDataPart:
// Do something with the generated image
guard let uiImage = UIImage(data: inlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
default:
fatalError("Unsupported part type: \(part)")
}
}
Kotlin
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)
// Provide a text prompt instructing the model to generate interleaved text and images
val prompt = """
Generate an illustrated recipe for a paella.
Create images to go alongside the text as you generate the recipe
""".trimIndent()
// To generate interleaved text and images, call `generateContent` with the text input
val responseContent = model.generateContent(prompt).candidates.first().content
// The response will contain image and text parts interleaved
for (part in responseContent.parts) {
when (part) {
is ImagePart -> {
// ImagePart as a bitmap
val generatedImageAsBitmap: Bitmap? = part.asImageOrNull()
}
is TextPart -> {
// Text content from the TextPart
val text = part.text
}
}
}
Java
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
"gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
new GenerationConfig.Builder()
.setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
.build()
);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a text prompt instructing the model to generate interleaved text and images
Content prompt = new Content.Builder()
.addText("Generate an illustrated recipe for a paella.\n" +
"Create images to go alongside the text as you generate the recipe")
.build();
// To generate interleaved text and images, call `generateContent` with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
Content responseContent = result.getCandidates().get(0).getContent();
// The response will contain image and text parts interleaved
for (Part part : responseContent.getParts()) {
if (part instanceof ImagePart) {
// ImagePart as a bitmap
Bitmap generatedImageAsBitmap = ((ImagePart) part).getImage();
} else if (part instanceof TextPart){
// Text content from the TextPart
String text = ((TextPart) part).getText();
}
}
}
@Override
public void onFailure(Throwable t) {
System.err.println(t);
}
}, executor);
Web
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
model: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: {
responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
},
});
// Provide a text prompt instructing the model to generate interleaved text and images
const prompt = 'Generate an illustrated recipe for a paella.\n.' +
'Create images to go alongside the text as you generate the recipe';
// To generate interleaved text and images, call `generateContent` with the text input
const result = await model.generateContent(prompt);
// Handle the generated text and image
try {
const response = result.response;
if (response.candidates?.[0].content?.parts) {
for (const part of response.candidates?.[0].content?.parts) {
if (part.text) {
// Do something with the text
console.log(part.text)
}
if (part.inlineData) {
// Do something with the image
const image = part.inlineData;
console.log(image.mimeType, image.data);
}
}
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
Dart
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
model: 'gemini-2.0-flash-preview-image-generation',
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);
// Provide a text prompt instructing the model to generate interleaved text and images
final prompt = [Content.text(
'Generate an illustrated recipe for a paella\n ' +
'Create images to go alongside the text as you generate the recipe'
)];
// To generate interleaved text and images, call `generateContent` with the text input
final response = await model.generateContent(prompt);
// Handle the generated text and image
final parts = response.candidates.firstOrNull?.content.parts
if (parts.isNotEmpty) {
for (final part in parts) {
if (part is TextPart) {
// Do something with text part
final text = part.text
}
if (part is InlineDataPart) {
// Process image
final imageBytes = part.bytes
}
}
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
Unity
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: new GenerationConfig(
responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);
// Provide a text prompt instructing the model to generate interleaved text and images
var prompt = "Generate an illustrated recipe for a paella \n" +
"Create images to go alongside the text as you generate the recipe";
// To generate interleaved text and images, call `GenerateContentAsync` with the text input
var response = await model.GenerateContentAsync(prompt);
// Handle the generated text and image
foreach (var part in response.Candidates.First().Content.Parts) {
if (part is ModelContent.TextPart textPart) {
if (!string.IsNullOrWhiteSpace(textPart.Text)) {
// Do something with the text
}
} else if (part is ModelContent.InlineDataPart dataPart) {
if (dataPart.MimeType == "image/png") {
// Load the Image into a Unity Texture2D object
UnityEngine.Texture2D texture2D = new(2, 2);
if (texture2D.LoadImage(dataPart.Data.ToArray())) {
// Do something with the image
}
}
}
}
瞭解如何選擇適合用途和應用程式的模型。
編輯圖片 (文字和圖片輸入)
在嘗試這個範例之前,請先完成本指南「開始前」一節,設定專案和應用程式。 在該部分,您也需要點選所選Gemini API供應商的按鈕,才能在本頁面上看到供應商專屬內容。 |
您可以透過文字和一或多張圖片,要求 Gemini 模型編輯圖片。
請務必建立 GenerativeModel
例項、在模型設定中加入 responseModalities: ["TEXT", "IMAGE"]
generateContent
。
Swift
import FirebaseAI
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [.text, .image])
)
// Provide an image for the model to edit
guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") }
// Provide a text prompt instructing the model to edit the image
let prompt = "Edit this image to make it look like a cartoon"
// To edit the image, call `generateContent` with the image and text input
let response = try await model.generateContent(image, prompt)
// Handle the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
Kotlin
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)
// Provide an image for the model to edit
val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones)
// Provide a text prompt instructing the model to edit the image
val prompt = content {
image(bitmap)
text("Edit this image to make it look like a cartoon")
}
// To edit the image, call `generateContent` with the prompt (image and text input)
val generatedImageAsBitmap = model.generateContent(prompt)
// Handle the generated text and image
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
Java
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
"gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
new GenerationConfig.Builder()
.setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
.build()
);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide an image for the model to edit
Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones);
// Provide a text prompt instructing the model to edit the image
Content promptcontent = new Content.Builder()
.addImage(bitmap)
.addText("Edit this image to make it look like a cartoon")
.build();
// To edit the image, call `generateContent` with the prompt (image and text input)
ListenableFuture<GenerateContentResponse> response = model.generateContent(promptcontent);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
// iterate over all the parts in the first candidate in the result object
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
Bitmap generatedImageAsBitmap = imagePart.getImage();
break;
}
}
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
model: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: {
responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
},
});
// Prepare an image for the model to edit
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
// Provide a text prompt instructing the model to edit the image
const prompt = "Edit this image to make it look like a cartoon";
const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);
// To edit the image, call `generateContent` with the image and text input
const result = await model.generateContent([prompt, imagePart]);
// Handle the generated image
try {
const inlineDataParts = result.response.inlineDataParts();
if (inlineDataParts?.[0]) {
const image = inlineDataParts[0].inlineData;
console.log(image.mimeType, image.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
Dart
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
model: 'gemini-2.0-flash-preview-image-generation',
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);
// Prepare an image for the model to edit
final image = await File('scones.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);
// Provide a text prompt instructing the model to edit the image
final prompt = TextPart("Edit this image to make it look like a cartoon");
// To edit the image, call `generateContent` with the image and text input
final response = await model.generateContent([
Content.multi([prompt,imagePart])
]);
// Handle the generated image
if (response.inlineDataParts.isNotEmpty) {
final imageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
Unity
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: new GenerationConfig(
responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);
// Prepare an image for the model to edit
var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "scones.jpg"));
var image = ModelContent.InlineData("image/jpeg", imageFile);
// Provide a text prompt instructing the model to edit the image
var prompt = ModelContent.Text("Edit this image to make it look like a cartoon.");
// To edit the image, call `GenerateContent` with the image and text input
var response = await model.GenerateContentAsync(new [] { prompt, image });
var text = response.Text;
if (!string.IsNullOrWhiteSpace(text)) {
// Do something with the text
}
// Handle the generated image
var imageParts = response.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
foreach (var imagePart in imageParts) {
// Load the Image into a Unity Texture2D object
Texture2D texture2D = new Texture2D(2, 2);
if (texture2D.LoadImage(imagePart.Data.ToArray())) {
// Do something with the image
}
}
瞭解如何選擇適合用途和應用程式的模型。
使用多輪對話功能重複執行及編輯圖片
在嘗試這個範例之前,請先完成本指南「開始前」一節,設定專案和應用程式。 在該部分,您也需要點選所選Gemini API供應商的按鈕,才能在本頁面上看到供應商專屬內容。 |
您可以使用多輪對話,針對 Gemini 模型產生或您提供的圖片進行疊代。
請務必建立 GenerativeModel
例項,在模型設定中加入 responseModalities: ["TEXT", "IMAGE"]
startChat()
和 sendMessage()
來傳送新使用者訊息。
Swift
import FirebaseAI
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [.text, .image])
)
// Initialize the chat
let chat = model.startChat()
guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") }
// Provide an initial text prompt instructing the model to edit the image
let prompt = "Edit this image to make it look like a cartoon"
// To generate an initial response, send a user message with the image and text prompt
let response = try await chat.sendMessage(image, prompt)
// Inspect the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
// Follow up requests do not need to specify the image again
let followUpResponse = try await chat.sendMessage("But make it old-school line drawing style")
// Inspect the edited image after the follow up request
guard let followUpInlineDataPart = followUpResponse.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let followUpUIImage = UIImage(data: followUpInlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
Kotlin
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)
// Provide an image for the model to edit
val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones)
// Create the initial prompt instructing the model to edit the image
val prompt = content {
image(bitmap)
text("Edit this image to make it look like a cartoon")
}
// Initialize the chat
val chat = model.startChat()
// To generate an initial response, send a user message with the image and text prompt
var response = chat.sendMessage(prompt)
// Inspect the returned image
var generatedImageAsBitmap = response
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
// Follow up requests do not need to specify the image again
response = chat.sendMessage("But make it old-school line drawing style")
generatedImageAsBitmap = response
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
Java
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
"gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
new GenerationConfig.Builder()
.setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
.build()
);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide an image for the model to edit
Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones);
// Initialize the chat
ChatFutures chat = model.startChat();
// Create the initial prompt instructing the model to edit the image
Content prompt = new Content.Builder()
.setRole("user")
.addImage(bitmap)
.addText("Edit this image to make it look like a cartoon")
.build();
// To generate an initial response, send a user message with the image and text prompt
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(prompt);
// Extract the image from the initial response
ListenableFuture<@Nullable Bitmap> initialRequest = Futures.transform(response, result -> {
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
return imagePart.getImage();
}
}
return null;
}, executor);
// Follow up requests do not need to specify the image again
ListenableFuture<GenerateContentResponse> modelResponseFuture = Futures.transformAsync(
initialRequest,
generatedImage -> {
Content followUpPrompt = new Content.Builder()
.addText("But make it old-school line drawing style")
.build();
return chat.sendMessage(followUpPrompt);
},
executor);
// Add a final callback to check the reworked image
Futures.addCallback(modelResponseFuture, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
Bitmap generatedImageAsBitmap = imagePart.getImage();
break;
}
}
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
model: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: {
responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
},
});
// Prepare an image for the model to edit
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);
// Provide an initial text prompt instructing the model to edit the image
const prompt = "Edit this image to make it look like a cartoon";
// Initialize the chat
const chat = model.startChat();
// To generate an initial response, send a user message with the image and text prompt
const result = await chat.sendMessage([prompt, imagePart]);
// Request and inspect the generated image
try {
const inlineDataParts = result.response.inlineDataParts();
if (inlineDataParts?.[0]) {
// Inspect the generated image
const image = inlineDataParts[0].inlineData;
console.log(image.mimeType, image.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
// Follow up requests do not need to specify the image again
const followUpResult = await chat.sendMessage("But make it old-school line drawing style");
// Request and inspect the returned image
try {
const followUpInlineDataParts = followUpResult.response.inlineDataParts();
if (followUpInlineDataParts?.[0]) {
// Inspect the generated image
const followUpImage = followUpInlineDataParts[0].inlineData;
console.log(followUpImage.mimeType, followUpImage.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
Dart
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
model: 'gemini-2.0-flash-preview-image-generation',
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);
// Prepare an image for the model to edit
final image = await File('scones.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);
// Provide an initial text prompt instructing the model to edit the image
final prompt = TextPart("Edit this image to make it look like a cartoon");
// Initialize the chat
final chat = model.startChat();
// To generate an initial response, send a user message with the image and text prompt
final response = await chat.sendMessage([
Content.multi([prompt,imagePart])
]);
// Inspect the returned image
if (response.inlineDataParts.isNotEmpty) {
final imageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
// Follow up requests do not need to specify the image again
final followUpResponse = await chat.sendMessage([
Content.text("But make it old-school line drawing style")
]);
// Inspect the returned image
if (followUpResponse.inlineDataParts.isNotEmpty) {
final followUpImageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
Unity
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: new GenerationConfig(
responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);
// Prepare an image for the model to edit
var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "scones.jpg"));
var image = ModelContent.InlineData("image/jpeg", imageFile);
// Provide an initial text prompt instructing the model to edit the image
var prompt = ModelContent.Text("Edit this image to make it look like a cartoon.");
// Initialize the chat
var chat = model.StartChat();
// To generate an initial response, send a user message with the image and text prompt
var response = await chat.SendMessageAsync(new [] { prompt, image });
// Inspect the returned image
var imageParts = response.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D texture2D = new(2, 2);
if (texture2D.LoadImage(imageParts.First().Data.ToArray())) {
// Do something with the image
}
// Follow up requests do not need to specify the image again
var followUpResponse = await chat.SendMessageAsync("But make it old-school line drawing style");
// Inspect the returned image
var followUpImageParts = followUpResponse.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D followUpTexture2D = new(2, 2);
if (followUpTexture2D.LoadImage(followUpImageParts.First().Data.ToArray())) {
// Do something with the image
}
瞭解如何選擇適合用途和應用程式的模型。
支援的功能、限制和最佳做法
支援的模式和功能
以下是 Gemini 模型支援的圖像輸出模式和功能。每項功能都會顯示提示範例,並在上面顯示程式碼範例。
文字轉圖片 (僅文字轉圖片)
- 生成艾菲爾鐵塔的圖片,背景有煙火。
文字轉圖片 (文字算繪)
- 產生大型建築物的電影風格相片,並在建築物前方投射這段巨型文字。
文字轉圖片和文字 (交錯)
產生燉飯的插圖食譜。產生食譜時,請一併建立圖片和文字。
以 3D 卡通動畫風格,產生關於狗狗的故事。為每個場景產生圖片。
圖片和文字轉換為圖片和文字 (交錯)
- [image of a furnished room] + 我可以選擇哪些顏色的沙發?可以更新圖片嗎?
圖片編輯 (文字和圖片轉換為圖片)
[scone 圖片] + 編輯圖片,讓圖片看起來像卡通
[貓咪圖片] + [抱枕圖片] + 在這個抱枕上製作貓咪十字繡。
多輪圖片編輯 (即時通訊)
- [藍色汽車圖片] + 將這輛車變成敞篷車。然後將顏色改為黃色。
限制與最佳做法
以下是 Gemini 模型圖像輸出的限制和最佳做法。
在這個公開實驗版本中,Gemini 支援以下功能:
- 生成 PNG 圖片,最大尺寸為 1024 像素。
- 生成及編輯人物圖片。
- 使用安全篩選器,提供靈活且限制較少的使用者體驗。
為獲得最佳效能,請使用以下語言:
en
、es-mx
、ja-jp
、zh-cn
、hi-in
。圖像生成功能不支援音訊或影片輸入內容。
系統不一定會觸發圖像生成功能。以下是一些已知問題:
模型只能輸出文字。
請嘗試明確要求圖片輸出內容 (例如「產生圖片」、「隨時提供圖片」、「更新圖片」)。模型可能會在中途停止產生內容。
請再試一次或改用其他提示。模型可能會以圖像形式產生文字。
請嘗試明確要求文字輸出。例如:「產生插圖和敘述文字」。
為圖片產生文字時,Gemini 的最佳做法是先產生文字,然後要求圖片中包含文字。