Gemini modelinden yalnızca metin içeren bir istemden veya çok formatlı bir istemden metin oluşturmasını isteyebilirsiniz. Firebase AI Logic kullandığınızda bu isteği doğrudan uygulamanızdan yapabilirsiniz.
Çok formatlı istemler birden fazla giriş türü (ör. resimler, PDF'ler, düz metin dosyaları, ses ve video ile birlikte metin) içerebilir.
Bu kılavuzda, yalnızca metin içeren bir istemden ve dosya içeren temel bir çok formatlı istemden nasıl metin oluşturulacağı açıklanmaktadır.
Yalnızca metin girişi için kod örneklerine git Çok formatlı giriş için kod örneklerine git
Metinle çalışma için ek seçenekler hakkında diğer kılavuzlara göz atın Yapılandırılmış çıkış oluşturma Çok turlu sohbet Çift yönlü yayın Cihaz üzerinde metin oluşturma Metinden görüntü oluşturma |
Başlamadan önce
Bu sayfada sağlayıcıya özel içerikleri ve kodu görüntülemek için Gemini API sağlayıcınızı tıklayın. |
Henüz yapmadıysanız başlangıç kılavuzunu tamamlayın. Bu kılavuzda Firebase projenizi ayarlama, uygulamanızı Firebase'e bağlama, SDK'yı ekleme, seçtiğiniz Gemini API sağlayıcısı için arka uç hizmetini başlatma ve GenerativeModel
örneği oluşturma hakkında bilgi verilmektedir.
İstemlerinizi test etmek ve yinelemek, hatta oluşturulmuş bir kod snippet'i almak için Google AI Studio'ı kullanmanızı öneririz.
Yalnızca metin içeren girişlerden metin oluşturma
Bu örneği denemeden önce projenizi ve uygulamanızı ayarlamak için bu kılavuzun Başlamadan önce bölümünü tamamlayın.Bu bölümde, seçtiğiniz Gemini API sağlayıcı için bir düğmeyi de tıklayarak bu sayfada sağlayıcıya özel içerikleri görebilirsiniz. |
Yalnızca metin içeren girişlerle istemde bulunarak Gemini modelinden metin oluşturmasını isteyebilirsiniz.
Swift
Yalnızca metin içeren girişlerden metin oluşturmak için
generateContent()
işlevini kullanabilirsiniz.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")
Kotlin
Yalnızca metin içeren girişlerden metin oluşturmak için
generateContent()
işlevini kullanabilirsiniz.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
Yalnızca metin içeren girişlerden metin oluşturmak için
generateContent()
işlevini kullanabilirsiniz.
ListenableFuture
döndürür.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
Yalnızca metin içeren girişlerden metin oluşturmak için
generateContent()
işlevini kullanabilirsiniz.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Yalnızca metin içeren girişlerden metin oluşturmak için
generateContent()
numarasına telefon edebilirsiniz.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
Unity
Yalnızca metin içeren girişlerden metin oluşturmak için
GenerateContentAsync()
işlevini kullanabilirsiniz.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";
// To generate text output, call GenerateContentAsync with the text input
var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Kullanım alanınıza ve uygulamanıza uygun bir model seçmeyi öğrenin.
Metin ve dosya (çok formatlı) girişinden metin oluşturma
Bu örneği denemeden önce projenizi ve uygulamanızı ayarlamak için bu kılavuzun Başlamadan önce bölümünü tamamlayın.Bu bölümde, seçtiğiniz Gemini API sağlayıcı için bir düğmeyi de tıklayarak bu sayfada sağlayıcıya özel içerikleri görebilirsiniz. |
Gemini modelinden, metin ve dosya istemiyle metin oluşturmasını isteyebilirsiniz. Her giriş dosyasının mimeType
ve dosyanın kendisi sağlanır. Giriş dosyalarıyla ilgili koşulları ve önerileri bu sayfanın ilerleyen bölümlerinde bulabilirsiniz.
Aşağıdaki örnekte, satır içi veri (base64 kodlu dosya) olarak sağlanan tek bir video dosyası analiz edilerek dosya girişinden nasıl metin oluşturulacağıyla ilgili temel bilgiler verilmektedir.
Bu örnekte dosyanın satır içi olarak sağlandığı gösterilmektedir ancak SDK'lar YouTube URL'si sağlamayı da destekler.
Swift
Metin ve video dosyalarından oluşan çok formatlı girişlerden metin oluşturmak için
generateContent()
işlevini çağırabilirsiniz.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Kotlin
Metin ve video dosyalarından oluşan çok formatlı girişlerden metin oluşturmak için
generateContent()
işlevini çağırabilirsiniz.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Java
Metin ve video dosyalarından oluşan çok formatlı girişlerden metin oluşturmak için
generateContent()
işlevini çağırabilirsiniz.
ListenableFuture
döndürür.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
Metin ve video dosyalarından oluşan çok formatlı girişlerden metin oluşturmak için
generateContent()
işlevini çağırabilirsiniz.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Metin ve video dosyalarının çok formatlı girişinden metin oluşturmak için
generateContent()
numaralı telefonu arayabilirsiniz.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
Unity
Metin ve video dosyalarından oluşan çok formatlı girişlerden metin oluşturmak için
GenerateContentAsync()
işlevini çağırabilirsiniz.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Kullanım alanınıza ve uygulamanıza uygun bir model seçmeyi öğrenin.
Yanıtı akış şeklinde göster
Bu örneği denemeden önce projenizi ve uygulamanızı ayarlamak için bu kılavuzun Başlamadan önce bölümünü tamamlayın.Bu bölümde, seçtiğiniz Gemini API sağlayıcı için bir düğmeyi de tıklayarak bu sayfada sağlayıcıya özel içerikleri görebilirsiniz. |
Model oluşturma işleminden gelen sonucun tamamını beklemek yerine akış özelliğini kullanarak kısmi sonuçları işleyebilir ve daha hızlı etkileşimler elde edebilirsiniz.
Yanıtı yayınlamak için generateContentStream
işlevini çağırın.
Giriş resim dosyalarıyla ilgili koşullar ve öneriler
Satır içi veri olarak sağlanan bir dosyanın aktarım sırasında base64 olarak kodlandığını ve bunun da isteğin boyutunu artırdığını unutmayın. İstek çok büyükse HTTP 413 hatası alırsınız.
Aşağıdaki konular hakkında ayrıntılı bilgi edinmek için Desteklenen giriş dosyaları ve Vertex AI Gemini API ile ilgili şartlar başlıklı makaleyi inceleyin:
- İsteklerde dosya sağlamak için farklı seçenekler (satır içi veya dosyanın URL'sini ya da URI'sini kullanarak)
- Desteklenen dosya türleri
- Desteklenen MIME türleri ve bunların nasıl belirtileceği
- Dosyalar ve çok formatlı isteklerle ilgili koşullar ve en iyi uygulamalar
Başka ne yapabilirsin?
- Modele uzun istemler göndermeden önce jetonları nasıl sayacağınızı öğrenin.
- AyarlaCloud Storage for Firebase Böylece çok formatlı isteklerinize büyük dosyalar ekleyebilir ve istemlerde dosya sağlamak için daha yönetilebilir bir çözüm elde edebilirsiniz. Dosyalar; resim, PDF, video ve ses içerebilir.
-
Aşağıdakiler de dahil olmak üzere üretime hazırlanma hakkında düşünmeye başlayın (üretim yapılacaklar listesine bakın):
- Firebase App Check kurarak Gemini API'ı yetkisiz istemcilerin kötüye kullanımına karşı koruyun.
- Yeni bir uygulama sürümü yayınlamadan uygulamanızdaki değerleri (ör. model adı) güncellemek için Firebase Remote Config entegrasyonu.
Diğer özellikleri deneyin
- Çok adımlı görüşmeler (sohbet) oluşturun.
- Yalnızca metin istemlerinden metin oluşturma
- Hem metin hem de çok formatlı istemlerden yapılandırılmış çıkış (ör. JSON) oluşturun.
- Metin istemlerinden resim oluşturma (Gemini veya Imagen).
- Üretken modelleri harici sistemlere ve bilgilere bağlamak için işlev çağrısı özelliğini kullanın.
İçerik oluşturmayı kontrol etme hakkında bilgi
- En iyi uygulamalar, stratejiler ve örnek istemler de dahil olmak üzere istem tasarımını anlama
- Sıcaklık ve maksimum çıkış parçası sayısı (Gemini için) ya da en boy oranı ve kişi oluşturma (Imagen için) gibi model parametrelerini yapılandırın.
- Zararlı olarak değerlendirilebilecek yanıtlar alma olasılığını ayarlamak için güvenlik ayarlarını kullanın.
Desteklenen modeller hakkında daha fazla bilgi
Çeşitli kullanım alanları için kullanılabilen modeller, bu modellerin kotaları ve fiyatlandırması hakkında bilgi edinin.Firebase AI Logic ile ilgili deneyiminiz hakkında geri bildirim verme