Analizzare i file video utilizzando l'API Gemini

Puoi chiedere a un modello Gemini di analizzare i file video che fornisci in linea (codificati in Base64) o tramite URL. Quando utilizzi Firebase AI Logic, puoi effettuare questa richiesta direttamente dalla tua app.

Con questa funzionalità puoi, ad esempio:

  • Sottotitolare e rispondere a domande sui video
  • Analizzare segmenti specifici di un video utilizzando i timestamp
  • Trascrivere i contenuti video elaborando sia la traccia audio sia i frame visivi
  • Descrivere, segmentare ed estrarre informazioni dai video, incluse la traccia audio e le immagini

Vai agli esempi di codice Vai al codice per le risposte in streaming


Consulta altre guide per ulteriori opzioni per lavorare con i video
Genera output strutturato Chat con più turni

Prima di iniziare

Fai clic sul tuo fornitore Gemini API per visualizzare i contenuti e il codice specifici del fornitore in questa pagina.

Se non l'hai ancora fatto, consulta la guida introduttiva, che descrive come configurare il progetto Firebase, collegare l'app a Firebase, aggiungere l'SDK, inizializzare il servizio di backend per il provider Gemini API scelto e creare un'istanza GenerativeModel.

Per testare e eseguire l'iterazione sui prompt e persino per ottenere uno snippet di codice generato, ti consigliamo di utilizzare Google AI Studio.

Genera testo da file video (codificati in base64)

Prima di provare questo esempio, completa la sezione Prima di iniziare di questa guida per configurare il progetto e l'app.
In questa sezione, dovrai anche fare clic su un pulsante per il fornitore Gemini API scelto per visualizzare i contenuti specifici del fornitore in questa pagina.

Puoi chiedere a un modello Gemini di generare testo tramite prompt con testo e video, fornendo il mimeType di ogni file di input e il file stesso. Trova requisiti e consigli per i file di input più avanti in questa pagina.

Tieni presente che questo esempio mostra come fornire il file in linea, ma gli SDK supportano anche la fornitura di un URL di YouTube.

Swift

Puoi chiamare generateContent() per generare testo dall'input multimodale di file di testo e video.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")

// Provide a text prompt to include with the video
let prompt = "What is in the video?"

// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")

Kotlin

Puoi chiamare generateContent() per generare testo dall'input multimodale di file di testo e video.

Per Kotlin, i metodi in questo SDK sono funzioni sospese e devono essere chiamati da un ambito coroutine.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    // Provide a prompt that includes the video specified above and text
    val prompt = content {
        inlineData(bytes, "video/mp4")
        text("What is in the video?")
    }

    // To generate text output, call generateContent with the prompt
    val response = generativeModel.generateContent(prompt)
    Log.d(TAG, response.text ?: "")
  }
}

Java

Puoi chiamare generateContent() per generare testo dall'input multimodale di file di testo e video.

Per Java, i metodi in questo SDK restituiscono un ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes the video specified above and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("What is in the video?")
                .build();

        // To generate text output, call generateContent with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        }, executor);
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

Web

Puoi chiamare generateContent() per generare testo dall'input multimodale di file di testo e video.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the video
  const prompt = "What do you see?";

  const fileInputEl = document.querySelector("input[type=file]");
  const videoPart = await fileToGenerativePart(fileInputEl.files[0]);

  // To generate text output, call generateContent with the text and video
  const result = await model.generateContent([prompt, videoPart]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

Puoi chiamare generateContent() per generare testo da input multimodali di file di testo e video.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");

// Prepare video for input
final video = await File('video0.mp4').readAsBytes();

// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);

// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
  Content.multi([prompt, ...videoPart])
]);
print(response.text);

Unity

Puoi chiamare GenerateContentAsync() per generare testo dall'input multimodale di file di testo e video.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
          UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));

// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");

// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Scopri come scegliere un modello appropriato per il tuo caso d'uso e la tua app.

Visualizza la risposta in streaming

Prima di provare questo esempio, completa la sezione Prima di iniziare di questa guida per configurare il progetto e l'app.
In questa sezione, dovrai anche fare clic su un pulsante per il fornitore Gemini API scelto per visualizzare i contenuti specifici del fornitore in questa pagina.

Puoi ottenere interazioni più rapide non aspettando l'intero risultato della generazione del modello, ma utilizzando lo streaming per gestire i risultati parziali. Per riprodurre in streaming la risposta, chiama generateContentStream.



Requisiti e consigli per i file video di input

Tieni presente che un file fornito come dati in linea viene codificato in base64 durante il transito, il che aumenta le dimensioni della richiesta. Viene visualizzato un errore HTTP 413 se una richiesta è troppo grande.

Consulta "File di input supportati e requisiti per Vertex AI Gemini API" per informazioni dettagliate su quanto segue:

Tipi MIME video supportati

Gemini I modelli multimodali supportano i seguenti tipi MIME video:

Tipo MIME video Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
FLV - video/x-flv
MOV - video/quicktime
MPEG - video/mpeg
MPEGPS - video/mpegps
MPG - video/mpg
MP4 - video/mp4
WEBM - video/webm
WMV - video/wmv
3GPP - video/3gpp

Limiti per richiesta

Ecco il numero massimo di file video consentiti in una richiesta di prompt:

  • Gemini 2.0 Flash e Gemini 2.0 Flash‑Lite: 10 file video



Cos'altro puoi fare?

Provare altre funzionalità

Scopri come controllare la generazione di contenuti

Puoi anche sperimentare con i prompt e le configurazioni del modello e persino ottenere uno snippet di codice generato utilizzando Google AI Studio.

Scopri di più sui modelli supportati

Scopri i modelli disponibili per vari casi d'uso e le relative quote e prezzi.


Inviare un feedback sulla tua esperienza con Firebase AI Logic