Puoi chiedere a un modello Gemini di analizzare i file video che fornisci in linea (codificati in base64) o tramite URL. Quando utilizzi Firebase AI Logic, puoi effettuare questa richiesta direttamente dalla tua app.
Con questa funzionalità puoi:
- Aggiungere didascalie e rispondere a domande sui video
- Analizzare segmenti specifici di un video utilizzando i timestamp
- Trascrivere i contenuti video elaborando sia la traccia audio che i fotogrammi visivi
- Descrivere, segmentare ed estrarre informazioni dai video, inclusi sia la traccia audio che i fotogrammi visivi.
Vai agli esempi di codice Vai al codice per le risposte in streaming
Consulta altre guide per ulteriori opzioni per lavorare con i video Genera output strutturato Chat multichat |
Prima di iniziare
Fai clic sul tuo fornitore Gemini API per visualizzare i contenuti e il codice specifici del fornitore in questa pagina. |
Se non l'hai ancora fatto, completa la guida introduttiva, che descrive come configurare il progetto Firebase, connettere l'app a Firebase, aggiungere l'SDK, inizializzare il servizio di backend per il provider Gemini API scelto e creare un'istanza GenerativeModel
.
Per testare e perfezionare i prompt e persino ottenere uno snippet di codice generato, ti consigliamo di utilizzare Google AI Studio.
Genera testo da file video (codificati in base64)
Prima di provare questo esempio, completa la sezione
Prima di iniziare di questa guida
per configurare il progetto e l'app. In questa sezione, fai clic anche su un pulsante per il provider Gemini API che hai scelto, in modo da visualizzare i contenuti specifici del provider in questa pagina. |
Puoi chiedere a un modello Gemini di
generare testo fornendo prompt di testo e video, indicando per ogni
file di input il mimeType
e il file stesso. Trova i
requisiti e i consigli per i file di input
più avanti in questa pagina.
Swift
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Kotlin
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Java
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
ListenableFuture
.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
Unity
Puoi chiamare
GenerateContentAsync()
per generare testo da input multimodali di testo e file video.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Scopri come scegliere un modello adatta al tuo caso d'uso e alla tua app.
Visualizzare in streaming la risposta
Prima di provare questo esempio, completa la sezione
Prima di iniziare di questa guida
per configurare il progetto e l'app. In questa sezione, fai clic anche su un pulsante per il provider Gemini API che hai scelto, in modo da visualizzare i contenuti specifici del provider in questa pagina. |
Puoi ottenere interazioni più rapide senza attendere l'intero risultato della
generazione del modello e utilizzare invece lo streaming per gestire i risultati parziali.
Per riprodurre in streaming la risposta, chiama il numero generateContentStream
.
Requisiti e consigli per i file video di input
Tieni presente che un file fornito come dati incorporati viene codificato in base64 durante il transito, il che aumenta le dimensioni della richiesta. Se una richiesta è troppo grande, viene visualizzato un errore HTTP 413.
Consulta "File di input e requisiti supportati per Vertex AI Gemini API" per informazioni dettagliate su:
- Diverse opzioni per fornire un file in una richiesta (in linea o utilizzando l'URL o l'URI del file)
- Requisiti e best practice per i file video
Tipi MIME video supportati
I modelli multimodali Gemini supportano i seguenti tipi MIME video:
Tipo MIME video | Gemini 2.0 Flash | Gemini 2.0 Flash‑Lite |
---|---|---|
FLV - video/x-flv |
||
MOV - video/quicktime |
||
MPEG - video/mpeg |
||
MPEGPS - video/mpegps |
||
MPG - video/mpg |
||
MP4 - video/mp4 |
||
WEBM - video/webm |
||
WMV - video/wmv |
||
3GPP - video/3gpp |
Limiti per richiesta
Ecco il numero massimo di file video consentiti in una richiesta di prompt:
- Gemini 2.0 Flash e Gemini 2.0 Flash‑Lite: 10 file video
Cos'altro puoi fare?
- Scopri come contare i token prima di inviare prompt lunghi al modello.
- Configura Cloud Storage for Firebase in modo da poter includere file di grandi dimensioni nelle richieste multimodali e avere una soluzione più gestita per fornire file nei prompt. I file possono includere immagini, PDF, video e audio.
-
Inizia a pensare a prepararti per la produzione (consulta l'elenco di controllo per la produzione),
tra cui:
- Configurazione di Firebase App Check per proteggere Gemini API da abusi da parte di client non autorizzati.
- Integrazione di Firebase Remote Config per aggiornare i valori nella tua app (ad esempio il nome del modello) senza rilasciare una nuova versione dell'app.
Prova altre funzionalità
- Crea conversazioni a più turni (chat).
- Genera testo da prompt solo di testo.
- Genera output strutturato (come JSON) da prompt di testo e multimodali.
- Genera immagini da prompt di testo (Gemini o Imagen).
- Utilizza la chiamata di funzione per connettere i modelli generativi a sistemi e informazioni esterni.
Scopri come controllare la generazione di contenuti
- Comprendere la progettazione dei prompt, incluse best practice, strategie ed esempi di prompt.
- Configura i parametri del modello, ad esempio temperatura e token di output massimi (per Gemini) o proporzioni e generazione di persone (per Imagen).
- Utilizza le impostazioni di sicurezza per regolare la probabilità di ricevere risposte che potrebbero essere considerate dannose.
Scopri di più sui modelli supportati
Scopri di più sui modelli disponibili per vari casi d'uso e sulle relative quote e prezzi.Fornisci un feedback sulla tua esperienza con Firebase AI Logic