Analyser des fichiers image à l'aide de l'API Gemini

Vous pouvez demander à un modèle Gemini d'analyser les fichiers image que vous fournissez en ligne (encodés en base64) ou via une URL. Lorsque vous utilisez Vertex AI in Firebase, vous pouvez effectuer cette requête directement depuis votre application.

Grâce à cette fonctionnalité, vous pouvez effectuer les actions suivantes:

  • Créer des légendes ou répondre à des questions sur des images
  • Écrire une nouvelle ou un poème à partir d'une image
  • Détecter des objets dans une image et renvoyer leurs coordonnées de cadre de délimitation
  • Étiqueter ou catégoriser un ensemble d'images en fonction de l'opinion, du style ou d'autres caractéristiques

Accéder aux exemples de code Accéder au code pour les réponses en flux


Consultez d'autres guides pour découvrir d'autres options de travail avec les images
Générer une sortie structurée Chat multitour Générer des images

Avant de commencer

Si ce n'est pas déjà fait, consultez le guide de démarrage, qui explique comment configurer votre projet Firebase, connecter votre application à Firebase, ajouter le SDK, initialiser le service Vertex AI et créer une instance GenerativeModel.

Pour tester et itérer vos requêtes, et même obtenir un extrait de code généré, nous vous recommandons d'utiliser Vertex AI Studio.

Envoyer des fichiers image (encodés en base64) et recevoir du texte

Assurez-vous d'avoir terminé la section Avant de commencer de ce guide avant d'essayer cet exemple.

Vous pouvez demander à un modèle Gemini de générer du texte en lui fournissant du texte et des images, en fournissant le mimeType de chaque fichier d'entrée et le fichier lui-même. Vous trouverez les exigences et recommandations concernant les fichiers d'entrée plus loin sur cette page.

Swift

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'images.

Entrée d'un seul fichier

import FirebaseVertexAI

// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()

// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")

guard let image = UIImage(systemName: "bicycle") else { fatalError() }

// Provide a text prompt to include with the image
let prompt = "What's in this picture?"

// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image, prompt)
print(response.text ?? "No text in response.")

Saisie de plusieurs fichiers

import FirebaseVertexAI

// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()

// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")

guard let image1 = UIImage(systemName: "car") else { fatalError() }
guard let image2 = UIImage(systemName: "car.2") else { fatalError() }

// Provide a text prompt to include with the images
let prompt = "What's different between these pictures?"

// To generate text output, call generateContent and pass in the prompt
let response = try await model.generateContent(image1, image2, prompt)
print(response.text ?? "No text in response.")

Kotlin

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'images.

Pour Kotlin, les méthodes de ce SDK sont des fonctions de suspension et doivent être appelées à partir d'un champ d'application de coroutine.

Entrée d'un seul fichier

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")

// Loads an image from the app/res/drawable/ directory
val bitmap: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)

// Provide a prompt that includes the image specified above and text
val prompt = content {
  image(bitmap)
  text("What developer tool is this mascot from?")
}

// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)

Saisie de plusieurs fichiers

Pour Kotlin, les méthodes de ce SDK sont des fonctions de suspension et doivent être appelées à partir d'un champ d'application de coroutine.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")

// Loads an image from the app/res/drawable/ directory
val bitmap1: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky)
val bitmap2: Bitmap = BitmapFactory.decodeResource(resources, R.drawable.sparky_eats_pizza)

// Provide a prompt that includes the images specified above and text
val prompt = content {
  image(bitmap1)
  image(bitmap2)
  text("What is different between these pictures?")
}

// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
print(response.text)

Java

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'images.

Pour Java, les méthodes de ce SDK renvoient un ListenableFuture.

Entrée d'un seul fichier

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
        .generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap bitmap = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);

// Provide a prompt that includes the image specified above and text
Content content = new Content.Builder()
        .addImage(bitmap)
        .addText("What developer tool is this mascot from?")
        .build();

// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Saisie de plusieurs fichiers

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
        .generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap bitmap1 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky);
Bitmap bitmap2 = BitmapFactory.decodeResource(getResources(), R.drawable.sparky_eats_pizza);

// Provide a prompt that includes the images specified above and text
Content prompt = new Content.Builder()
    .addImage(bitmap1)
    .addImage(bitmap2)
    .addText("What's different between these pictures?")
    .build();

// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'images.

Entrée d'un seul fichier

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });

// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the image
  const prompt = "What's different between these pictures?";

  const fileInputEl = document.querySelector("input[type=file]");
  const imagePart = await fileToGenerativePart(fileInputEl.files[0]);

  // To generate text output, call generateContent with the text and image
  const result = await model.generateContent([prompt, imagePart]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Saisie de plusieurs fichiers

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });

// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the images
  const prompt = "What's different between these pictures?";

  // Prepare images for input
  const fileInputEl = document.querySelector("input[type=file]");
  const imageParts = await Promise.all(
    [...fileInputEl.files].map(fileToGenerativePart)
  );

  // To generate text output, call generateContent with the text and images
  const result = await model.generateContent([prompt, ...imageParts]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

Vous pouvez appeler generateContent() pour générer du texte à partir d'une entrée multimodale de texte et d'images.

Entrée d'un seul fichier

import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
      FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');

// Provide a text prompt to include with the image
final prompt = TextPart("What's in the picture?");
// Prepare images for input
final image = await File('image0.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);

// To generate text output, call generateContent with the text and image
final response = await model.generateContent([
  Content.multi([prompt,imagePart])
]);
print(response.text);

Saisie de plusieurs fichiers

import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
      FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');

final (firstImage, secondImage) = await (
  File('image0.jpg').readAsBytes(),
  File('image1.jpg').readAsBytes()
).wait;
// Provide a text prompt to include with the images
final prompt = TextPart("What's different between these pictures?");
// Prepare images for input
final imageParts = [
  InlineDataPart('image/jpeg', firstImage),
  InlineDataPart('image/jpeg', secondImage),
];

// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
  Content.multi([prompt, ...imageParts])
]);
print(response.text);

Découvrez comment choisir un modèle et éventuellement un emplacement adapté à votre cas d'utilisation et à votre application.

Afficher la réponse de manière progressive

Assurez-vous d'avoir terminé la section Avant de commencer de ce guide avant d'essayer cet exemple.

Vous pouvez accélérer les interactions en n'attendant pas le résultat complet de la génération du modèle, et en utilisant plutôt le streaming pour gérer les résultats partiels. Pour diffuser la réponse, appelez generateContentStream.



Exigences et recommandations concernant les fichiers image d'entrée

Consultez la section "Fichiers d'entrée compatibles et exigences pour Vertex AI Gemini API" pour en savoir plus sur les éléments suivants:

Types MIME d'image compatibles

Les modèles multimodaux Gemini sont compatibles avec les types MIME d'image suivants:

Type MIME de l'image Gemini 2.0 Flash Gemini 2.0 Flash‑Lite
PNG - image/png
JPEG - image/jpeg
WebP - image/webp

Limites par requête

Il n'y a pas de limite spécifique au nombre de pixels dans une image. Cependant, les images plus volumineuses sont réduites et remplies pour correspondre à une résolution maximale de 3072 x 3072, tout en préservant leur format d'origine.

Voici le nombre maximal de fichiers image autorisé dans une requête:

  • Gemini 2.0 Flash et Gemini 2.0 Flash‑Lite: 3 000 images



Qu'est-ce que tu sais faire d'autre ?

  • Découvrez comment compter les jetons avant d'envoyer des requêtes longues au modèle.
  • Configurez Cloud Storage for Firebase pour pouvoir inclure des fichiers volumineux dans vos requêtes multimodales et disposer d'une solution plus gérée pour fournir des fichiers dans les requêtes. Il peut s'agir d'images, de PDF, de vidéos et de fichiers audio.
  • Commencez à penser à la préparation de la production, y compris à la configuration de Firebase App Check pour protéger Gemini API contre les utilisations abusives par des clients non autorisés. Veillez également à consulter la checklist de production.

Essayer d'autres fonctionnalités

Découvrez comment contrôler la génération de contenu.

Vous pouvez également tester des requêtes et des configurations de modèle à l'aide de Vertex AI Studio.

En savoir plus sur les modèles compatibles

Découvrez les modèles disponibles pour différents cas d'utilisation, ainsi que leurs quotas et leurs tarifs.


Envoyer des commentaires sur votre expérience avec Vertex AI in Firebase