ประมวลผลข้อมูลจำนวนมากด้วย Dataflow

หน้านี้แสดงตัวอย่างวิธีใช้ Dataflow เพื่อดำเนินการCloud Firestoreแบบกลุ่มใน ไปป์ไลน์ Apache Beam Apache Beam รองรับตัวเชื่อมต่อสำหรับ Cloud Firestore คุณใช้ตัวเชื่อมต่อนี้เพื่อเรียกใช้การดำเนินการแบบกลุ่มและแบบสตรีมมิงใน Dataflow ได้

เราขอแนะนำให้ใช้ Dataflow และ Apache Beam สำหรับภาระงานการประมวลผลข้อมูลขนาดใหญ่

Cloud Firestore ตัวเชื่อมต่อสำหรับ Apache Beam พร้อมให้บริการใน Java ดูข้อมูลเพิ่มเติมเกี่ยวกับCloud Firestoreได้ที่ Apache Beam SDK สำหรับ Java

ก่อนเริ่มต้น

ก่อนอ่านหน้านี้ คุณควรทำความคุ้นเคยกับรูปแบบการเขียนโปรแกรมสำหรับ Apache Beam

หากต้องการเรียกใช้ตัวอย่าง คุณต้องเปิดใช้ Dataflow API

ตัวอย่างไปป์ไลน์ Cloud Firestore

ตัวอย่างด้านล่างแสดงไปป์ไลน์ที่เขียนข้อมูลและไปป์ไลน์ที่อ่านและกรองข้อมูล คุณใช้ตัวอย่างเหล่านี้เป็นจุดเริ่มต้นสำหรับไปป์ไลน์ของตัวเองได้

การเรียกใช้ไปป์ไลน์ตัวอย่าง

ซอร์สโค้ดสำหรับตัวอย่างมีอยู่ในที่เก็บ googleapis/java-firestore บน GitHub หากต้องการเรียกใช้ตัวอย่างเหล่านี้ ให้ดาวน์โหลดซอร์สโค้ด และดูREADME

ตัวอย่างไปป์ไลน์ Write

ตัวอย่างต่อไปนี้สร้างเอกสารในคอลเล็กชัน cities-beam-sample

public class ExampleFirestoreBeamWrite {
  private static final FirestoreOptions FIRESTORE_OPTIONS = FirestoreOptions.getDefaultInstance();

  public static void main(String[] args) {
    runWrite(args, "cities-beam-sample");
  }

  public static void runWrite(String[] args, String collectionId) {
    // create pipeline options from the passed in arguments
    PipelineOptions options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class);
    Pipeline pipeline = Pipeline.create(options);

    RpcQosOptions rpcQosOptions =
        RpcQosOptions.newBuilder()
            .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers())
            .build();

    // create some writes
    Write write1 =
        Write.newBuilder()
            .setUpdate(
                Document.newBuilder()
                    // resolves to
                    // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/NYC
                    .setName(createDocumentName(collectionId, "NYC"))
                    .putFields("name", Value.newBuilder().setStringValue("New York City").build())
                    .putFields("state", Value.newBuilder().setStringValue("New York").build())
                    .putFields("country", Value.newBuilder().setStringValue("USA").build()))
            .build();

    Write write2 =
        Write.newBuilder()
            .setUpdate(
                Document.newBuilder()
                    // resolves to
                    // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/TOK
                    .setName(createDocumentName(collectionId, "TOK"))
                    .putFields("name", Value.newBuilder().setStringValue("Tokyo").build())
                    .putFields("country", Value.newBuilder().setStringValue("Japan").build())
                    .putFields("capital", Value.newBuilder().setBooleanValue(true).build()))
            .build();

    // batch write the data
    pipeline
        .apply(Create.of(write1, write2))
        .apply(FirestoreIO.v1().write().batchWrite().withRpcQosOptions(rpcQosOptions).build());

    // run the pipeline
    pipeline.run().waitUntilFinish();
  }

  private static String createDocumentName(String collectionId, String cityDocId) {
    String documentPath =
        String.format(
            "projects/%s/databases/%s/documents",
            FIRESTORE_OPTIONS.getProjectId(), FIRESTORE_OPTIONS.getDatabaseId());

    return documentPath + "/" + collectionId + "/" + cityDocId;
  }
}

ตัวอย่างนี้ใช้อาร์กิวเมนต์ต่อไปนี้เพื่อกำหนดค่าและเรียกใช้ไปป์ไลน์

GOOGLE_CLOUD_PROJECT=project-id
REGION=region
TEMP_LOCATION=gs://temp-bucket/temp/
NUM_WORKERS=number-workers
MAX_NUM_WORKERS=max-number-workers

ตัวอย่างไปป์ไลน์ Read

ไปป์ไลน์ตัวอย่างต่อไปนี้จะอ่านเอกสารจากcities-beam-sample คอลเล็กชัน ใช้ตัวกรองสำหรับเอกสารที่ตั้งค่าฟิลด์ country เป็น USA และแสดงผลชื่อของเอกสารที่ตรงกัน

public class ExampleFirestoreBeamRead {

  public static void main(String[] args) {
    runRead(args, "cities-beam-sample");
  }

  public static void runRead(String[] args, String collectionId) {
    FirestoreOptions firestoreOptions = FirestoreOptions.getDefaultInstance();

    PipelineOptions options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class);
    Pipeline pipeline = Pipeline.create(options);

    RpcQosOptions rpcQosOptions =
        RpcQosOptions.newBuilder()
            .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers())
            .build();

    pipeline
        .apply(Create.of(collectionId))
        .apply(
            new FilterDocumentsQuery(
                firestoreOptions.getProjectId(), firestoreOptions.getDatabaseId()))
        .apply(FirestoreIO.v1().read().runQuery().withRpcQosOptions(rpcQosOptions).build())
        .apply(
            ParDo.of(
                // transform each document to its name
                new DoFn<RunQueryResponse, String>() {
                  @ProcessElement
                  public void processElement(ProcessContext c) {
                    c.output(Objects.requireNonNull(c.element()).getDocument().getName());
                  }
                }))
        .apply(
            ParDo.of(
                // print the document name
                new DoFn<String, Void>() {
                  @ProcessElement
                  public void processElement(ProcessContext c) {
                    System.out.println(c.element());
                  }
                }));

    pipeline.run().waitUntilFinish();
  }

  private static final class FilterDocumentsQuery
      extends PTransform<PCollection<String>, PCollection<RunQueryRequest>> {

    private final String projectId;
    private final String databaseId;

    public FilterDocumentsQuery(String projectId, String databaseId) {
      this.projectId = projectId;
      this.databaseId = databaseId;
    }

    @Override
    public PCollection<RunQueryRequest> expand(PCollection<String> input) {
      return input.apply(
          ParDo.of(
              new DoFn<String, RunQueryRequest>() {
                @ProcessElement
                public void processElement(ProcessContext c) {
                  // select from collection "cities-collection-<uuid>"
                  StructuredQuery.CollectionSelector collection =
                      StructuredQuery.CollectionSelector.newBuilder()
                          .setCollectionId(Objects.requireNonNull(c.element()))
                          .build();
                  // filter where country is equal to USA
                  StructuredQuery.Filter countryFilter =
                      StructuredQuery.Filter.newBuilder()
                          .setFieldFilter(
                              StructuredQuery.FieldFilter.newBuilder()
                                  .setField(
                                      StructuredQuery.FieldReference.newBuilder()
                                          .setFieldPath("country")
                                          .build())
                                  .setValue(Value.newBuilder().setStringValue("USA").build())
                                  .setOp(StructuredQuery.FieldFilter.Operator.EQUAL))
                          .buildPartial();

                  RunQueryRequest runQueryRequest =
                      RunQueryRequest.newBuilder()
                          .setParent(DocumentRootName.format(projectId, databaseId))
                          .setStructuredQuery(
                              StructuredQuery.newBuilder()
                                  .addFrom(collection)
                                  .setWhere(countryFilter)
                                  .build())
                          .build();
                  c.output(runQueryRequest);
                }
              }));
    }
  }
}

ตัวอย่างนี้ใช้อาร์กิวเมนต์ต่อไปนี้เพื่อกำหนดค่าและเรียกใช้ไปป์ไลน์

GOOGLE_CLOUD_PROJECT=project-id
REGION=region
TEMP_LOCATION=gs://temp-bucket/temp/
NUM_WORKERS=number-workers
MAX_NUM_WORKERS=max-number-workers

ราคา

การเรียกใช้เวิร์กโหลด Cloud Firestore ใน Dataflow จะมีค่าใช้จ่าย สำหรับการใช้งาน Cloud Firestore และการใช้งาน Dataflow ระบบจะเรียกเก็บเงินการใช้งาน Dataflow สำหรับทรัพยากรที่งานของคุณใช้ ดูรายละเอียดได้ที่หน้าราคาของ Dataflow ดูCloud Firestoreราคาได้ที่ หน้าการกำหนดราคา

ขั้นตอนถัดไป