You can deploy Genkit flows as web services using Cloud Run. This page, as an example, walks you through the process of deploying the default sample flow.
Install the Google Cloud CLI if you haven't already.
Create a new Google Cloud project using the Cloud console or choose an existing one. The project must be linked to a billing account.
After you create or choose a project, configure the Google Cloud CLI to use it:
gcloud auth login
gcloud init
Create a directory for the Genkit sample project:
mkdir -p ~/tmp/genkit-cloud-project
cd ~/tmp/genkit-cloud-project
If you're going to use an IDE, open it to this directory.
Initialize a Go module in your project directory:
go mod init example/cloudrun
go mod get github.com/firebase/genkit/go
Create a sample app using Genkit:
package main import ( "context" "fmt" "log" "net/http" "os" "github.com/firebase/genkit/go/ai" "github.com/firebase/genkit/go/genkit" "github.com/firebase/genkit/go/plugins/googlegenai" "github.com/firebase/genkit/go/plugins/server" ) func main() { ctx := context.Background() // Initialize Genkit with the Google AI plugin and Gemini 2.0 Flash. // Alternatively, use &googlegenai.VertexAI{} and "vertexai/gemini-2.0-flash" // to use Vertex AI as the provider instead. g, err := genkit.Init(ctx, genkit.WithPlugins(&googlegenai.GoogleAI{}), genkit.WithDefaultModel("googleai/gemini-2.0-flash"), ) if err != nil { log.Fatalf("failed to initialize Genkit: %w", err) } flow := genkit.DefineFlow(g, "jokesFlow", func(ctx context.Context, topic string) (string, error) { resp, err := genkit.Generate(ctx, g, ai.WithPrompt(`Tell a short joke about %s. Be creative!`, topic), ) if err != nil { return "", fmt.Errorf("failed to generate joke: %w", err) } return resp.Text(), nil }) mux := http.NewServeMux() mux.HandleFunc("POST /jokesFlow", genkit.Handler(flow)) log.Fatal(server.Start(ctx, "127.0.0.1:"+os.Getenv("PORT"), mux)) }
Make API credentials available to your deployed function. Choose which credentials you need based on your choice in the sample above:
Gemini (Google AI)
Make sure Google AI is available in your region.
Generate an API key for the Gemini API using Google AI Studio.
Make the API key available in the Cloud Run environment:
- In the Cloud console, enable the Secret Manager API.
- On the Secret Manager page, create a new secret containing your API key.
- After you create the secret, on the same page, grant your default compute service account access to the secret with the Secret Manager Secret Accessor role. (You can look up the name of the default compute service account on the IAM page.)
In a later step, when you deploy your service, you will need to reference the name of this secret.
Gemini (Vertex AI)
In the Cloud console, Enable the Vertex AI API for your project.
On the IAM page, ensure that the Default compute service account is granted the Vertex AI User role.
The only secret you need to set up for this tutorial is for the model provider, but in general, you must do something similar for each service your flow uses.
Optional: Try your flow in the developer UI:
Set up your local environment for the model provider you chose:
Gemini (Google AI)
export GEMINI_API_KEY=<your API key>
Gemini (Vertex AI)
export GOOGLE_CLOUD_PROJECT=<your project ID>
export GOOGLE_CLOUD_LOCATION=us-central1
gcloud auth application-default login
Start the UI:
genkit start -- go run .
In the developer UI (http://localhost:4000/), run the flow:
Click jokesFlow.
On the Input JSON tab, provide a subject for the model:
"bananas"
Click Run.
If everything's working as expected so far, you can build and deploy the flow:
Gemini (Google AI)
gcloud run deploy --port 3400 \ --update-secrets=GEMINI_API_KEY=<your-secret-name>:latest
Gemini (Vertex AI)
gcloud run deploy --port 3400 \ --set-env-vars GOOGLE_CLOUD_PROJECT=<your-gcloud-project> \ --set-env-vars GOOGLE_CLOUD_LOCATION=us-central1
(
GOOGLE_CLOUD_LOCATION
configures the Vertex API region you want to use.)Choose
N
when asked if you want to allow unauthenticated invocations. AnsweringN
will configure your service to require IAM credentials. See Authentication in the Cloud Run docs for information on providing these credentials.
After deployment finishes, the tool will print the service URL. You can test
it with curl
:
curl -X POST https://<service-url>/menuSuggestionFlow \
-H "Authorization: Bearer $(gcloud auth print-identity-token)" \
-H "Content-Type: application/json" -d '"bananas"'