您可以使用 Firebase ML 為圖片中辨識到的物件加上標籤。如要瞭解這項 API 的功能,請參閱總覽。
事前準備
- 如果您尚未將 Firebase 新增至 Android 專案,請先新增。
-
在模組 (應用程式層級) Gradle 檔案 (通常是
<project>/<app-module>/build.gradle.kts
或<project>/<app-module>/build.gradle
) 中,加入 Android 適用的 Firebase ML Vision 程式庫依附元件。建議使用 Firebase Android BoM 控制程式庫版本。dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:34.0.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
只要使用 Firebase Android BoM,應用程式就會一律使用相容的 Firebase Android 程式庫版本。
(替代做法) 不使用 BoM 新增 Firebase 程式庫依附元件
如果選擇不使用 Firebase BoM,則必須在依附元件行中指定每個 Firebase 程式庫版本。
請注意,如果應用程式使用多個 Firebase 程式庫,強烈建議使用 BoM 管理程式庫版本,確保所有版本都相容。
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
-
如果尚未為專案啟用雲端 API,請立即啟用:
- 在 Firebase 控制台中開啟「APIs」(API) Firebase ML 頁面。
-
如果尚未將專案升級至即付即用 Blaze 定價方案,請按一下「升級」。只有在專案未採用 Blaze 定價方案時,系統才會提示您升級。
只有採用 Blaze 定價方案的專案才能使用雲端 API。
- 如果尚未啟用雲端 API,請按一下「啟用雲端 API」。
現在可以開始標記圖片。
1. 準備輸入圖片
從圖片建立FirebaseVisionImage
物件。
使用 Bitmap
時,圖片標籤器運作速度最快。如果使用 camera2 API,建議使用 JPEG 格式的 media.Image
。
-
如要從
media.Image
物件建立FirebaseVisionImage
物件 (例如從裝置的相機擷取圖片時),請將media.Image
物件和圖片的旋轉角度傳遞至FirebaseVisionImage.fromMediaImage()
。如果您使用 CameraX 程式庫,
OnImageCapturedListener
和ImageAnalysis.Analyzer
類別會為您計算旋轉值,因此您只需將旋轉值轉換為 Firebase ML 的ROTATION_
常數之一,然後呼叫FirebaseVisionImage.fromMediaImage()
:Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
如果您使用的相機程式庫未提供圖片的旋轉角度,可以根據裝置的旋轉角度和裝置中相機感應器的方向計算:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
接著,將
media.Image
物件和旋轉值傳遞至FirebaseVisionImage.fromMediaImage()
:Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- 如要從檔案 URI 建立
FirebaseVisionImage
物件,請將應用程式內容和檔案 URI 傳遞至FirebaseVisionImage.fromFilePath()
。當您使用ACTION_GET_CONTENT
意圖提示使用者從相簿應用程式選取圖片時,這項功能就非常實用。Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- 如要從
ByteBuffer
或位元組陣列建立FirebaseVisionImage
物件,請先計算圖片旋轉角度,如上文所述,以做為media.Image
輸入內容。接著,建立
FirebaseVisionImageMetadata
物件,其中包含圖片的高度、寬度、色彩編碼格式和旋轉角度:Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
使用緩衝區或陣列,以及中繼資料物件,建立
FirebaseVisionImage
物件:Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- 如要從
Bitmap
物件建立FirebaseVisionImage
物件,請執行下列操作:Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
物件代表的圖片必須直立,不需額外旋轉。
2. 設定並執行圖片標籤器
如要為圖片中的物件加上標籤,請將FirebaseVisionImage
物件傳遞至 FirebaseVisionImageLabeler
的 processImage
方法。
首先,請取得
FirebaseVisionImageLabeler
的例項。Kotlin
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
接著,將圖片傳遞至
processImage()
方法:Kotlin
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. 取得標示物件的相關資訊
如果圖片標籤作業成功,系統會將FirebaseVisionImageLabel
物件清單傳遞至成功事件監聽器。每個 FirebaseVisionImageLabel
物件代表圖片中標示的項目。每個標籤都包含標籤的文字說明、知識圖譜實體 ID (如有) 和相符程度信心分數。例如:
Kotlin
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
後續步驟
- 在正式環境中部署使用 Cloud API 的應用程式之前,請先採取幾個額外步驟,防範未經授權的 API 存取活動,並減輕其影響。