זיהוי ציוני דרך באמצעות למידת מכונה של Firebase ב-iOS

אפשר להשתמש ב-Firebase ML כדי לזהות ציוני דרך מפורסמים בתמונה.

לפני שמתחילים

    אם עדיין לא הוספתם את Firebase לאפליקציה, עליכם לפעול לפי השלבים שמפורטים במדריך לתחילת העבודה.

    שימוש ב-Swift Package Manager כדי להתקין ולנהל יחסי תלות ב-Firebase.

    1. ב-Xcode, כשפרויקט האפליקציה פתוח, עוברים אל קובץ > הוספת חבילות.
    2. כשמופיעה בקשה, מוסיפים את המאגר של Firebase SDK לפלטפורמות של Apple:
    3.   https://github.com/firebase/firebase-ios-sdk.git
    4. בוחרים את הספרייה Firebase ML.
    5. מוסיפים את הדגל -ObjC לקטע Other Linker Flags (דגלים אחרים של קישור) בהגדרות ה-build של היעד.
    6. בסיום, Xcode יתחיל לפתור את יחסי התלות ולהוריד אותם באופן אוטומטי ברקע.

    בשלב הבא מבצעים כמה הגדרות באפליקציה:

    1. באפליקציה, מייבאים את Firebase:

      Swift

      import FirebaseMLModelDownloader

      Objective-C

      @import FirebaseMLModelDownloader;
  1. אם עדיין לא הפעלתם ממשקי API מבוססי-Cloud בפרויקט, עליכם לעשות זאת עכשיו:

    1. פותחים את דף ממשקי ה-API של Firebase ML במסוף Firebase.
    2. אם עדיין לא שדרגתם את הפרויקט לתוכנית התמחור Blaze בתשלום לפי שימוש, לוחצים על שדרוג. (הבקשה לשדרוג תוצג רק אם הפרויקט לא מוגדר לתוכנית התמחור Blaze).

      רק בפרויקטים בתוכנית התמחור Blaze אפשר להשתמש בממשקי API מבוססי-Cloud.

    3. אם ממשקי ה-API מבוססי-הענן עדיין לא מופעלים, לוחצים על Enable Cloud-based APIs.

הגדרת הכלי לזיהוי ציוני דרך

כברירת מחדל, הגלאי של Cloud משתמש בגרסה היציבה של המודל ומחזיר עד 10 תוצאות. אם רוצים לשנות אחת מההגדרות האלה, צריך לציין אותה באמצעות אובייקט VisionCloudDetectorOptions, כמו בדוגמה הבאה:

Swift

let options = VisionCloudDetectorOptions()
options.modelType = .latest
options.maxResults = 20

Objective-C

  FIRVisionCloudDetectorOptions *options =
      [[FIRVisionCloudDetectorOptions alloc] init];
  options.modelType = FIRVisionCloudModelTypeLatest;
  options.maxResults = 20;
  

בשלב הבא, מעבירים את האובייקט VisionCloudDetectorOptions כשיוצרים את אובייקט הגלאי ב-Cloud.

הרצת הגלאי של ציוני דרך

כדי לזהות ציוני דרך בתמונה, מעבירים את התמונה כ-UIImage או כ-CMSampleBufferRef ל-method‏ detect(in:) של VisionCloudLandmarkDetector:

  1. אחזור מופע של VisionCloudLandmarkDetector:

    Swift

    lazy var vision = Vision.vision()
    
    let cloudDetector = vision.cloudLandmarkDetector(options: options)
    // Or, to use the default settings:
    // let cloudDetector = vision.cloudLandmarkDetector()

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionCloudLandmarkDetector *landmarkDetector = [vision cloudLandmarkDetector];
    // Or, to change the default settings:
    // FIRVisionCloudLandmarkDetector *landmarkDetector =
    //     [vision cloudLandmarkDetectorWithOptions:options];
  2. כדי לקרוא ל-Cloud Vision, הפורמט של התמונה צריך להיות כמחרוזת בקידוד base64. כדי לעבד UIImage:

    Swift

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objective-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. לאחר מכן, מעבירים את התמונה לשיטה detect(in:):

    Swift

    cloudDetector.detect(in: visionImage) { landmarks, error in
      guard error == nil, let landmarks = landmarks, !landmarks.isEmpty else {
        // ...
        return
      }
    
      // Recognized landmarks
      // ...
    }

    Objective-C

    [landmarkDetector detectInImage:image
                         completion:^(NSArray<FIRVisionCloudLandmark *> *landmarks,
                                      NSError *error) {
      if (error != nil) {
        return;
      } else if (landmarks != nil) {
        // Got landmarks
      }
    }];

לקבל מידע על הסמנים המוכרים

אם זיהוי ציוני הדרך יצליח, מערך של אובייקטים מסוג VisionCloudLandmark יועבר למטפל ההשלמה. מכל אובייקט אפשר לקבל מידע על ציון דרך שזוהה בתמונה.

לדוגמה:

Swift

for landmark in landmarks {
  let landmarkDesc = landmark.landmark
  let boundingPoly = landmark.frame
  let entityId = landmark.entityId

  // A landmark can have multiple locations: for example, the location the image
  // was taken, and the location of the landmark depicted.
  for location in landmark.locations {
    let latitude = location.latitude
    let longitude = location.longitude
  }

  let confidence = landmark.confidence
}

Objective-C

for (FIRVisionCloudLandmark *landmark in landmarks) {
   NSString *landmarkDesc = landmark.landmark;
   CGRect frame = landmark.frame;
   NSString *entityId = landmark.entityId;

   // A landmark can have multiple locations: for example, the location the image
   // was taken, and the location of the landmark depicted.
   for (FIRVisionLatitudeLongitude *location in landmark.locations) {
     double latitude = [location.latitude doubleValue];
     double longitude = [location.longitude doubleValue];
   }

   float confidence = [landmark.confidence floatValue];
}

השלבים הבאים