با استفاده از Gemini API متن تولید کنید

می‌توانید از یک مدل Gemini بخواهید متنی را از یک اعلان متنی یا چند وجهی تولید کند. وقتی از Vertex AI در Firebase استفاده می‌کنید، می‌توانید این درخواست را مستقیماً از برنامه خود ارسال کنید.

اعلان‌های چندوجهی می‌توانند شامل چندین نوع ورودی (مانند متن همراه با تصاویر، فایل‌های PDF، فایل‌های متن ساده، صدا و ویدئو) باشند.

این راهنما نشان می‌دهد که چگونه می‌توان متن را از یک اعلان متنی و از یک فرمان چندوجهی اولیه که شامل یک فایل است، تولید کرد.

پرش به نمونه کد برای ورودی فقط متنی پرش به نمونه کد برای ورودی چندوجهی


راهنماهای دیگر را برای گزینه های اضافی برای کار با متن ببینید
تولید خروجی ساختاریافته چت چند نوبتی جریان دوطرفه تولید تصاویر از متن

قبل از شروع

اگر قبلاً این کار را نکرده‌اید، راهنمای شروع را کامل کنید، که نحوه راه‌اندازی پروژه Firebase را توضیح می‌دهد، برنامه خود را به Firebase متصل کنید، SDK را اضافه کنید، سرویس Vertex AI را راه‌اندازی کنید، و یک نمونه GenerativeModel ایجاد کنید.

برای آزمایش و تکرار بر روی دستورات خود و حتی دریافت یک قطعه کد تولید شده، توصیه می کنیم از Vertex AI Studio استفاده کنید.

ارسال متن و دریافت متن

قبل از امتحان کردن این نمونه، مطمئن شوید که بخش قبل از شروع این راهنما را تکمیل کرده اید.

می‌توانید از یک مدل Gemini بخواهید که متن را با درخواست با ورودی فقط متن تولید کند.

سویفت

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.

import FirebaseVertexAI

// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()

// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")

// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."

// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")

Kotlin

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.

برای Kotlin، روش‌های موجود در این SDK توابع تعلیق هستند و باید از یک محدوده Coroutine فراخوانی شوند.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")

// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."

// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)

Java

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.

برای جاوا، روش‌های موجود در این SDK یک ListenableFuture برمی‌گردانند.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
        .generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// Provide a prompt that contains text
Content prompt = new Content.Builder()
    .addText("Write a story about a magic backpack.")
    .build();

// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });

// Wrap in an async function so you can use await
async function run() {
  // Provide a prompt that contains text
  const prompt = "Write a story about a magic backpack."

  // To generate text output, call generateContent with the text input
  const result = await model.generateContent(prompt);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

برای تولید متن از ورودی متنی، می‌توانید generateContent() فراخوانی کنید.

import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
      FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');

// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);

ارسال متن و فایل (چند وجهی) و دریافت متن

قبل از امتحان کردن این نمونه، مطمئن شوید که بخش قبل از شروع این راهنما را تکمیل کرده اید.

می‌توانید از یک مدل Gemini بخواهید که متنی را با درخواست متن و یک فایل تولید کند—با ارائه mimeType هر فایل ورودی و خود فایل. الزامات و توصیه‌های مربوط به فایل‌های ورودی را بعداً در این صفحه پیدا کنید.

مثال زیر اصول اولیه نحوه تولید متن از ورودی فایل را با تجزیه و تحلیل یک فایل ویدئویی ارائه شده به عنوان داده درون خطی (فایل کدگذاری شده با base64) نشان می دهد.

سویفت

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.

import FirebaseVertexAI

// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()

// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")

// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")

// Provide a text prompt to include with the video
let prompt = "What is in the video?"

// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")

Kotlin

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.

برای Kotlin، روش‌های موجود در این SDK توابع تعلیق هستند و باید از یک محدوده Coroutine فراخوانی شوند.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")

val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    // Provide a prompt that includes the video specified above and text
    val prompt = content {
        inlineData(bytes, "video/mp4")
        text("What is in the video?")
    }

    // To generate text output, call generateContent with the prompt
    val response = generativeModel.generateContent(prompt)
    Log.d(TAG, response.text ?: "")
  }
}

Java

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.

برای جاوا، روش‌های موجود در این SDK یک ListenableFuture برمی‌گردانند.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
        .generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes the video specified above and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("What is in the video?")
                .build();

        // To generate text output, call generateContent with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        }, executor);
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

Web

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });

// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the video
  const prompt = "What do you see?";

  const fileInputEl = document.querySelector("input[type=file]");
  const videoPart = await fileToGenerativePart(fileInputEl.files[0]);

  // To generate text output, call generateContent with the text and video
  const result = await model.generateContent([prompt, videoPart]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

برای تولید متن از ورودی چند وجهی فایل‌های متنی و ویدیویی، می‌توانید generateContent() فراخوانی کنید.

import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
      FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');

// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");

// Prepare video for input
final video = await File('video0.mp4').readAsBytes();

// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);

// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
  Content.multi([prompt, ...videoPart])
]);
print(response.text);

نحوه انتخاب یک مدل و به صورت اختیاری مکان مناسب برای مورد استفاده و برنامه خود را بیاموزید.

جریان پاسخ

قبل از امتحان کردن این نمونه، مطمئن شوید که بخش قبل از شروع این راهنما را تکمیل کرده اید.

می‌توانید با منتظر ماندن برای کل نتیجه تولید مدل، به تعاملات سریع‌تری برسید و در عوض از استریم برای مدیریت نتایج جزئی استفاده کنید. برای پخش جریانی پاسخ، generateContentStream را فراخوانی کنید.



الزامات و توصیه‌ها برای فایل‌های تصویری ورودی

برای کسب اطلاعات دقیق در مورد موارد زیر ، فایل‌های ورودی پشتیبانی شده و الزامات Vertex AI Gemini API را ببینید:

  • گزینه های مختلف برای ارائه یک فایل در یک درخواست (به صورت درون خطی یا با استفاده از URL یا URI فایل)
  • انواع فایل های پشتیبانی شده
  • انواع MIME پشتیبانی شده و نحوه تعیین آنها
  • الزامات و بهترین شیوه ها برای فایل ها و درخواست های چندوجهی



چه کار دیگری می توانید انجام دهید؟

  • قبل از ارسال پیام های طولانی به مدل، نحوه شمارش نشانه ها را بیاموزید.
  • Cloud Storage for Firebase راه‌اندازی کنید تا بتوانید فایل‌های حجیم را در درخواست‌های چندوجهی خود بگنجانید و راه‌حل مدیریت‌شده‌تری برای ارائه فایل‌ها در درخواست‌ها داشته باشید. فایل‌ها می‌توانند شامل تصاویر، PDF، ویدیو و صدا باشند.
  • به فکر آماده شدن برای تولید، از جمله راه‌اندازی Firebase App Check برای محافظت از Gemini API در برابر سوء استفاده توسط مشتریان غیرمجاز باشید. همچنین، حتماً چک لیست تولید را مرور کنید.

قابلیت های دیگر را امتحان کنید

یاد بگیرید چگونه تولید محتوا را کنترل کنید

همچنین می‌توانید با استفاده از Vertex AI Studio ، دستورات و پیکربندی‌های مدل را آزمایش کنید.

درباره مدل های پشتیبانی شده بیشتر بدانید

در مورد مدل های موجود برای موارد استفاده مختلف و سهمیه ها و قیمت آنها اطلاعات کسب کنید.


درباره تجربه خود با Vertex AI در Firebase بازخورد بدهید