Ajouter un libellé aux images avec un modèle entraîné AutoML sur Android

Une fois que vous avez entraîné votre propre modèle à l'aide d'AutoML Vision Edge, vous pouvez l'utiliser dans votre application pour étiqueter des images.

Il existe deux façons d'intégrer des modèles entraînés à partir d'AutoML Vision Edge : vous pouvez regrouper le modèle en le plaçant dans le dossier d'assets de votre application, ou vous pouvez le télécharger dynamiquement depuis Firebase.

Options de regroupement de modèles
Regroupé dans votre application
  • Le modèle fait partie de l'APK de votre application.
  • Le modèle est disponible immédiatement, même lorsque l'appareil Android est hors connexion.
  • Pas besoin de projet Firebase
Hébergé avec Firebase
  • Hébergez le modèle en l'important dans Firebase Machine Learning.
  • Réduit la taille de l'APK
  • Le modèle est téléchargé à la demande
  • Déployer des mises à jour de modèles sans republier votre application
  • Tests A/B simplifiés avec Firebase Remote Config
  • Nécessite un projet Firebase

Avant de commencer

  1. Ajoutez les dépendances pour les bibliothèques Android ML Kit au fichier Gradle au niveau de l'application de votre module, qui est généralement app/build.gradle :

    Pour regrouper un modèle avec votre application :

    dependencies {
      // ...
      // Image labeling feature with bundled automl model
      implementation 'com.google.mlkit:image-labeling-custom:16.3.1'
    }
    

    Pour télécharger un modèle de manière dynamique depuis Firebase, ajoutez la dépendance linkFirebase :

    dependencies {
      // ...
      // Image labeling feature with automl model downloaded
      // from firebase
      implementation 'com.google.mlkit:image-labeling-custom:16.3.1'
      implementation 'com.google.mlkit:linkfirebase:16.1.0'
    }
    
  2. Si vous souhaitez télécharger un modèle, assurez-vous d'ajouter Firebase à votre projet Android, si ce n'est pas déjà fait. Cette étape n'est pas nécessaire lorsque vous regroupez le modèle.

1. Charger le modèle

Configurer une source de modèle local

Pour regrouper le modèle avec votre application :

  1. Extrayez le modèle et ses métadonnées de l'archive ZIP que vous avez téléchargée depuis la console Firebase. Nous vous recommandons d'utiliser les fichiers tels que vous les avez téléchargés, sans les modifier (y compris les noms de fichiers).

  2. Incluez votre modèle et ses fichiers de métadonnées dans le package de votre application :

    1. Si votre projet ne comporte pas de dossier d'éléments, créez-en un en effectuant un clic droit sur le dossier app/, puis en cliquant sur Nouveau > Dossier > Dossier d'éléments.
    2. Créez un sous-dossier dans le dossier "assets" pour contenir les fichiers du modèle.
    3. Copiez les fichiers model.tflite, dict.txt et manifest.json dans le sous-dossier (les trois fichiers doivent se trouver dans le même dossier).
  3. Ajoutez les éléments suivants au fichier build.gradle de votre application pour vous assurer que Gradle ne compresse pas le fichier de modèle lors de la compilation de l'application :

    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    

    Le fichier de modèle sera inclus dans le package de l'application et disponible pour ML Kit en tant qu'asset brut.

  4. Créez un objet LocalModel en spécifiant le chemin d'accès au fichier manifeste du modèle :

    Java

    AutoMLImageLabelerLocalModel localModel =
        new AutoMLImageLabelerLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            // or .setAbsoluteFilePath(absolute file path to manifest file)
            .build();
    

    Kotlin

    val localModel = LocalModel.Builder()
        .setAssetManifestFilePath("manifest.json")
        // or .setAbsoluteManifestFilePath(absolute file path to manifest file)
        .build()
    

Configurer une source de modèle hébergée par Firebase

Pour utiliser le modèle hébergé à distance, créez un objet CustomRemoteModel en spécifiant le nom que vous avez attribué au modèle lors de sa publication :

Java

// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
    new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
    new CustomRemoteModel.Builder(firebaseModelSource).build();

Kotlin

// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
    .build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()

Lancez ensuite la tâche de téléchargement du modèle en spécifiant les conditions dans lesquelles vous souhaitez autoriser le téléchargement. Si le modèle n'est pas sur l'appareil ou si une version plus récente du modèle est disponible, la tâche télécharge le modèle de manière asynchrone depuis Firebase :

Java

DownloadConditions downloadConditions = new DownloadConditions.Builder()
        .requireWifi()
        .build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(@NonNull Task<Void> task) {
                // Success.
            }
        });

Kotlin

val downloadConditions = DownloadConditions.Builder()
    .requireWifi()
    .build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
    .addOnSuccessListener {
        // Success.
    }

De nombreuses applications lancent la tâche de téléchargement dans leur code d'initialisation, mais vous pouvez le faire à tout moment avant d'avoir besoin d'utiliser le modèle.

Créer un outil de classification d'images à partir de votre modèle

Après avoir configuré vos sources de modèle, créez un objet ImageLabeler à partir de l'une d'elles.

Si vous ne disposez que d'un modèle groupé localement, créez simplement un outil de libellisation à partir de votre objet CustomImageLabelerOptions et configurez le seuil de score de confiance que vous souhaitez exiger (voir Évaluer votre modèle) :

Java

CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Cloud console
                                   // to determine an appropriate value.
    .build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);

Kotlin

val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Cloud console
                                   // to determine an appropriate value.
    .build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)

Si vous disposez d'un modèle hébergé à distance, vous devrez vérifier qu'il a été téléchargé avant de l'exécuter. Vous pouvez vérifier l'état de la tâche de téléchargement du modèle à l'aide de la méthode isModelDownloaded() du gestionnaire de modèles.

Bien que vous n'ayez à confirmer cela qu'avant d'exécuter le module de classification, si vous disposez à la fois d'un modèle hébergé à distance et d'un modèle regroupé localement, il peut être judicieux d'effectuer cette vérification lors de l'instanciation du module de classification d'images : créez un module de classification à partir du modèle distant s'il a été téléchargé, et à partir du modèle local dans le cas contraire.

Java

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener<Boolean>() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                CustomImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
                }
                CustomImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Cloud console
                                                       // to determine an appropriate threshold.
                        .build();

                ImageLabeler labeler = ImageLabeling.getClient(options);
            }
        });

Kotlin

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded ->
        val optionsBuilder =
            if (isDownloaded) {
                CustomImageLabelerOptions.Builder(remoteModel)
            } else {
                CustomImageLabelerOptions.Builder(localModel)
            }
        // Evaluate your model in the Cloud console to determine an appropriate threshold.
        val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
        val labeler = ImageLabeling.getClient(options)
}

Si vous ne disposez que d'un modèle hébergé à distance, vous devez désactiver les fonctionnalités liées au modèle (par exemple, griser ou masquer une partie de votre UI) jusqu'à ce que vous confirmiez que le modèle a été téléchargé. Pour ce faire, vous pouvez associer un écouteur à la méthode download() du gestionnaire de modèles :

Java

RemoteModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

Kotlin

RemoteModelManager.getInstance().download(remoteModel, conditions)
    .addOnSuccessListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

2. Préparer l'image d'entrée

Ensuite, pour chaque image que vous souhaitez annoter, créez un objet InputImage à partir de votre image. Le détecteur de libellés d'images fonctionne plus rapidement lorsque vous utilisez un Bitmap ou, si vous utilisez l'API camera2, un media.Image YUV_420_888, qui sont recommandés dans la mesure du possible.

Vous pouvez créer un InputImage à partir de différentes sources, chacune étant expliquée ci-dessous.

Utiliser un media.Image

Pour créer un objet InputImage à partir d'un objet media.Image, par exemple lorsque vous capturez une image à partir de l'appareil photo d'un appareil, transmettez l'objet media.Image et la rotation de l'image à InputImage.fromMediaImage().

Si vous utilisez la bibliothèque CameraX, les classes OnImageCapturedListener et ImageAnalysis.Analyzer calculent la valeur de rotation pour vous.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {
    override fun analyze(imageProxy: ImageProxy?) {
        val mediaImage = imageProxy?.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        if (imageProxy == null || imageProxy.getImage() == null) {
            return;
        }
        Image mediaImage = imageProxy.getImage();
        InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees);
        // Pass image to an ML Kit Vision API
        // ...
    }
}

Si vous n'utilisez pas de bibliothèque d'appareil photo qui vous indique le degré de rotation de l'image, vous pouvez le calculer à partir du degré de rotation de l'appareil et de l'orientation du capteur de l'appareil photo dans l'appareil :

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 90)
    ORIENTATIONS.append(Surface.ROTATION_90, 0)
    ORIENTATIONS.append(Surface.ROTATION_180, 270)
    ORIENTATIONS.append(Surface.ROTATION_270, 180)
}
/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // On most devices, the sensor orientation is 90 degrees, but for some
    // devices it is 270 degrees. For devices with a sensor orientation of
    // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
    val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
        .getCameraCharacteristics(cameraId)
        .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
    rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360

    // Return the corresponding FirebaseVisionImageMetadata rotation value.
    val result: Int
    when (rotationCompensation) {
        0 -> result = FirebaseVisionImageMetadata.ROTATION_0
        90 -> result = FirebaseVisionImageMetadata.ROTATION_90
        180 -> result = FirebaseVisionImageMetadata.ROTATION_180
        270 -> result = FirebaseVisionImageMetadata.ROTATION_270
        else -> {
            result = FirebaseVisionImageMetadata.ROTATION_0
            Log.e(TAG, "Bad rotation value: $rotationCompensation")
        }
    }
    return result
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 90);
    ORIENTATIONS.append(Surface.ROTATION_90, 0);
    ORIENTATIONS.append(Surface.ROTATION_180, 270);
    ORIENTATIONS.append(Surface.ROTATION_270, 180);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, Context context)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // On most devices, the sensor orientation is 90 degrees, but for some
    // devices it is 270 degrees. For devices with a sensor orientation of
    // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
    CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);
    rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;

    // Return the corresponding FirebaseVisionImageMetadata rotation value.
    int result;
    switch (rotationCompensation) {
        case 0:
            result = FirebaseVisionImageMetadata.ROTATION_0;
            break;
        case 90:
            result = FirebaseVisionImageMetadata.ROTATION_90;
            break;
        case 180:
            result = FirebaseVisionImageMetadata.ROTATION_180;
            break;
        case 270:
            result = FirebaseVisionImageMetadata.ROTATION_270;
            break;
        default:
            result = FirebaseVisionImageMetadata.ROTATION_0;
            Log.e(TAG, "Bad rotation value: " + rotationCompensation);
    }
    return result;
}

Ensuite, transmettez l'objet media.Image et la valeur du degré de rotation à InputImage.fromMediaImage() :

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Utiliser un URI de fichier

Pour créer un objet InputImage à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI de fichier à InputImage.fromFilePath(). Cela est utile lorsque vous utilisez un intent ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image dans son application Galerie.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Utiliser un ByteBuffer ou un ByteArray

Pour créer un objet InputImage à partir d'un ByteBuffer ou d'un ByteArray, commencez par calculer le degré de rotation de l'image, comme décrit précédemment pour l'entrée media.Image. Créez ensuite l'objet InputImage avec le tampon ou le tableau, ainsi que la hauteur, la largeur, le format d'encodage des couleurs et le degré de rotation de l'image :

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Utiliser un Bitmap

Pour créer un objet InputImage à partir d'un objet Bitmap, effectuez la déclaration suivante :

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

L'image est représentée par un objet Bitmap ainsi que par des degrés de rotation.

3. Exécuter l'outil de classification d'images

Pour libeller des objets dans une image, transmettez l'objet image à la méthode process() de ImageLabeler.

Java

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

Kotlin

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

4. Obtenir des informations sur les objets étiquetés

Si l'opération d'étiquetage d'image aboutit, une liste d'objets ImageLabel est transmise au listener de réussite. Chaque objet ImageLabel représente un élément identifié dans l'image. Vous pouvez obtenir la description textuelle de chaque libellé, le score de confiance de la correspondance et l'index de la correspondance. Exemple :

Java

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Conseils pour améliorer les performances en temps réel

Si vous souhaitez étiqueter des images dans une application en temps réel, suivez ces consignes pour obtenir les meilleures fréquences d'images :

  • Limitez les appels à l'outil d'étiquetage d'images. Si une nouvelle image vidéo devient disponible pendant l'exécution du programme de classification d'images, supprimez-la. Pour obtenir un exemple, consultez la classe VisionProcessorBase dans l'exemple d'application de démarrage rapide.
  • Si vous utilisez la sortie du détecteur de libellés d'image pour superposer des éléments graphiques sur l'image d'entrée, obtenez d'abord le résultat, puis affichez l'image et superposez-la en une seule étape. Vous n'avez ainsi besoin d'effectuer le rendu sur la surface d'affichage qu'une seule fois pour chaque frame d'entrée. Pour obtenir un exemple, consultez les classes CameraSourcePreview et GraphicOverlay dans l'exemple d'application de démarrage rapide.
  • Si vous utilisez l'API Camera2, capturez les images au format ImageFormat.YUV_420_888.

    Si vous utilisez l'ancienne API Camera, capturez les images au format ImageFormat.NV21.