Rileva oggetti nelle immagini con un modello addestrato con AutoML sulle piattaforme Apple

Dopo aver addestrato il tuo modello utilizzando AutoML Vision Edge, puoi utilizzarlo nella tua app per rilevare oggetti nelle immagini.

Esistono due modi per integrare i modelli addestrati da AutoML Vision Edge. Puoi raggruppare il modello copiando i file del modello nel tuo progetto Xcode oppure puoi scaricarlo dinamicamente da Firebase.

Opzioni di raggruppamento dei modelli
Inclusi nell'app
  • Il modello fa parte del pacchetto
  • Il modello è disponibile immediatamente, anche quando il dispositivo Apple è offline
  • Non è necessario un progetto Firebase
Ospitato con Firebase
  • Ospita il modello caricandolo su Firebase Machine Learning
  • Riduce le dimensioni dell'app bundle
  • Il modello viene scaricato on demand
  • Esegui il push degli aggiornamenti del modello senza ripubblicare l'app
  • Test A/B semplici con Firebase Remote Config
  • Richiede un progetto Firebase

Prima di iniziare

  1. Se vuoi scaricare un modello, assicurati di aggiungere Firebase al tuo progetto Apple, se non lo hai già fatto. Questa operazione non è necessaria quando raggruppi il modello.

  2. Includi le librerie TensorFlow e Firebase nel tuo podfile:

    Per raggruppare un modello con l'app:

    Swift

    pod 'TensorFlowLiteSwift'
    

    Objective-C

    pod 'TensorFlowLiteObjC'
    

    Per scaricare dinamicamente un modello da Firebase, aggiungi la dipendenza Firebase/MLModelInterpreter:

    Swift

    pod 'TensorFlowLiteSwift'
    pod 'Firebase/MLModelInterpreter'
    

    Objective-C

    pod 'TensorFlowLiteObjC'
    pod 'Firebase/MLModelInterpreter'
    
  3. Dopo aver installato o aggiornato i pod del progetto, apri il progetto Xcode utilizzando il file .xcworkspace.

1. Carica il modello

Configurare un'origine modello locale

Per raggruppare il modello con la tua app, copia il modello e il file delle etichette nel tuo progetto Xcode, avendo cura di selezionare Crea riferimenti alle cartelle quando lo fai. Il file del modello e le etichette verranno inclusi nel bundle dell'app.

Esamina anche il file tflite_metadata.json creato insieme al modello. Sono necessari due valori:

  • Le dimensioni di input del modello. Per impostazione predefinita, è 320 x 320.
  • Il numero massimo di rilevamenti del modello. Il valore predefinito è 40.

Configura un'origine modello ospitata da Firebase

Per utilizzare il modello ospitato in remoto, crea un oggetto CustomRemoteModel specificando il nome che hai assegnato al modello quando lo hai pubblicato:

Swift

let remoteModel = CustomRemoteModel(
    name: "your_remote_model"  // The name you assigned in the Google Cloud console.
)

Objective-C

FIRCustomRemoteModel *remoteModel = [[FIRCustomRemoteModel alloc]
                                     initWithName:@"your_remote_model"];

Poi avvia l'attività di download del modello, specificando le condizioni in base alle quali vuoi consentire il download. Se il modello non è sul dispositivo o se è disponibile una versione più recente, l'attività scaricherà in modo asincrono il modello da Firebase:

Swift

let downloadProgress = ModelManager.modelManager().download(
    remoteModel,
    conditions: ModelDownloadConditions(
        allowsCellularAccess: true,
        allowsBackgroundDownloading: true
    )
)

Objective-C

FIRModelDownloadConditions *conditions =
        [[FIRModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                             allowsBackgroundDownloading:YES];
NSProgress *progress = [[FIRModelManager modelManager] downloadModel:remoteModel
                                                          conditions:conditions];

Molte app avviano l'attività di download nel codice di inizializzazione, ma puoi farlo in qualsiasi momento prima di dover utilizzare il modello.

Crea un rilevatore di oggetti dal tuo modello

Dopo aver configurato le origini del modello, crea un oggetto TensorFlow Lite Interpreter da una di queste.

Se hai solo un modello in bundle locale, crea un interprete dal file del modello:

Swift

guard let modelPath = Bundle.main.path(
    forResource: "model",
    ofType: "tflite"
) else {
  print("Failed to load the model file.")
  return true
}
let interpreter = try Interpreter(modelPath: modelPath)
try interpreter.allocateTensors()

Objective-C

NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model"
                                                      ofType:@"tflite"];

NSError *error;
TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:modelPath
                                                                  error:&error];
if (error != NULL) { return; }

[interpreter allocateTensorsWithError:&error];
if (error != NULL) { return; }

Se hai un modello ospitato in remoto, devi verificare che sia stato scaricato prima di eseguirlo. Puoi controllare lo stato del download del modello utilizzando il metodo isModelDownloaded(remoteModel:) di Model Manager.

Anche se devi confermare questa operazione solo prima di eseguire l'interprete, se hai sia un modello ospitato in remoto sia un modello incluso localmente, potrebbe essere opportuno eseguire questo controllo durante l'istanziamento di Interpreter: crea un interprete dal modello remoto se è stato scaricato e dal modello locale in caso contrario.

Swift

var modelPath: String?
if ModelManager.modelManager().isModelDownloaded(remoteModel) {
    ModelManager.modelManager().getLatestModelFilePath(remoteModel) { path, error in
        guard error == nil else { return }
        guard let path = path else { return }
        modelPath = path
    }
} else {
    modelPath = Bundle.main.path(
        forResource: "model",
        ofType: "tflite"
    )
}

guard modelPath != nil else { return }
let interpreter = try Interpreter(modelPath: modelPath)
try interpreter.allocateTensors()

Objective-C

__block NSString *modelPath;
if ([[FIRModelManager modelManager] isModelDownloaded:remoteModel]) {
    [[FIRModelManager modelManager] getLatestModelFilePath:remoteModel
                                                completion:^(NSString * _Nullable filePath,
                                                             NSError * _Nullable error) {
        if (error != NULL) { return; }
        if (filePath == NULL) { return; }
        modelPath = filePath;
    }];
} else {
    modelPath = [[NSBundle mainBundle] pathForResource:@"model"
                                                ofType:@"tflite"];
}

NSError *error;
TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:modelPath
                                                                  error:&error];
if (error != NULL) { return; }

[interpreter allocateTensorsWithError:&error];
if (error != NULL) { return; }

Se hai solo un modello ospitato in remoto, devi disattivare la funzionalità correlata al modello, ad esempio oscurare o nascondere parte della tua UI, finché non confermi che il modello è stato scaricato.

Puoi ottenere lo stato del download del modello collegando gli osservatori al Centro notifiche predefinito. Assicurati di utilizzare un riferimento debole a self nel blocco observer, poiché i download possono richiedere del tempo e l'oggetto di origine può essere liberato al termine del download. Ad esempio:

Swift

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              FIRRemoteModel *model = note.userInfo[FIRModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[FIRModelDownloadUserInfoKeyError];
            }];

2. Prepara l'immagine di input

Successivamente, devi preparare le immagini per l'interprete TensorFlow Lite.

  1. Ritaglia e ridimensiona l'immagine in base alle dimensioni di input del modello, come specificato nel file tflite_metadata.json (320 x 320 pixel per impostazione predefinita). Puoi farlo con Core Image o una libreria di terze parti.

  2. Copia i dati dell'immagine in un Data (oggetto NSData):

    Swift

    guard let image: CGImage = // Your input image
    guard let context = CGContext(
      data: nil,
      width: image.width, height: image.height,
      bitsPerComponent: 8, bytesPerRow: image.width * 4,
      space: CGColorSpaceCreateDeviceRGB(),
      bitmapInfo: CGImageAlphaInfo.noneSkipFirst.rawValue
    ) else {
      return nil
    }
    
    context.draw(image, in: CGRect(x: 0, y: 0, width: image.width, height: image.height))
    guard let imageData = context.data else { return nil }
    
    var inputData = Data()
    for row in 0 ..< 320 {    // Model takes 320x320 pixel images as input
      for col in 0 ..< 320 {
        let offset = 4 * (col * context.width + row)
        // (Ignore offset 0, the unused alpha channel)
        var red = imageData.load(fromByteOffset: offset+1, as: UInt8.self)
        var green = imageData.load(fromByteOffset: offset+2, as: UInt8.self)
        var blue = imageData.load(fromByteOffset: offset+3, as: UInt8.self)
    
        inputData.append(&red, count: 1)
        inputData.append(&green, count: 1)
        inputData.append(&blue, count: 1)
      }
    }
    

    Objective-C

    CGImageRef image = // Your input image
    long imageWidth = CGImageGetWidth(image);
    long imageHeight = CGImageGetHeight(image);
    CGContextRef context = CGBitmapContextCreate(nil,
                                                 imageWidth, imageHeight,
                                                 8,
                                                 imageWidth * 4,
                                                 CGColorSpaceCreateDeviceRGB(),
                                                 kCGImageAlphaNoneSkipFirst);
    CGContextDrawImage(context, CGRectMake(0, 0, imageWidth, imageHeight), image);
    UInt8 *imageData = CGBitmapContextGetData(context);
    
    NSMutableData *inputData = [[NSMutableData alloc] initWithCapacity:0];
    
    for (int row = 0; row < 300; row++) {
      for (int col = 0; col < 300; col++) {
        long offset = 4 * (row * imageWidth + col);
        // (Ignore offset 0, the unused alpha channel)
        UInt8 red = imageData[offset+1];
        UInt8 green = imageData[offset+2];
        UInt8 blue = imageData[offset+3];
    
        [inputData appendBytes:&red length:1];
        [inputData appendBytes:&green length:1];
        [inputData appendBytes:&blue length:1];
      }
    }
    

3. Esegui il rilevatore di oggetti

Dopodiché, passa l'input preparato all'interprete:

Swift

try interpreter.copy(inputData, toInputAt: 0)
try interpreter.invoke()

Objective-C

TFLTensor *input = [interpreter inputTensorAtIndex:0 error:&error];
if (error != nil) { return; }

[input copyData:inputData error:&error];
if (error != nil) { return; }

[interpreter invokeWithError:&error];
if (error != nil) { return; }

4. Ricevere informazioni sugli oggetti rilevati

Se il rilevamento degli oggetti ha esito positivo, il modello produce come output tre array di 40 elementi (o di qualsiasi altro valore specificato nel file tflite_metadata.json) ciascuno. Ogni elemento corrisponde a un potenziale oggetto. La prima matrice è una matrice di riquadri di delimitazione, la seconda una matrice di etichette e la terza una matrice di valori di confidenza. Per ottenere gli output del modello:

Swift

var output = try interpreter.output(at: 0)
let boundingBoxes =
    UnsafeMutableBufferPointer<Float32>.allocate(capacity: 4 * 40)
output.data.copyBytes(to: boundingBoxes)

output = try interpreter.output(at: 1)
let labels =
    UnsafeMutableBufferPointer<Float32>.allocate(capacity: 40)
output.data.copyBytes(to: labels)

output = try interpreter.output(at: 2)
let probabilities =
    UnsafeMutableBufferPointer<Float32>.allocate(capacity: 40)
output.data.copyBytes(to: probabilities)

Objective-C

TFLTensor *output = [interpreter outputTensorAtIndex:0 error:&error];
if (error != nil) { return; }
NSData *boundingBoxes = [output dataWithError:&error];
if (error != nil) { return; }

output = [interpreter outputTensorAtIndex:1 error:&error];
if (error != nil) { return; }
NSData *labels = [output dataWithError:&error];
if (error != nil) { return; }

output = [interpreter outputTensorAtIndex:2 error:&error];
if (error != nil) { return; }
NSData *probabilities = [output dataWithError:&error];
if (error != nil) { return; }

A questo punto, puoi combinare gli output delle etichette con il dizionario delle etichette:

Swift

guard let labelPath = Bundle.main.path(
    forResource: "dict",
    ofType: "txt"
) else { return true }
let fileContents = try? String(contentsOfFile: labelPath)
guard let labelText = fileContents?.components(separatedBy: "\n") else { return true }

for i in 0 ..< 40 {
    let top = boundingBoxes[0 * i]
    let left = boundingBoxes[1 * i]
    let bottom = boundingBoxes[2 * i]
    let right = boundingBoxes[3 * i]

    let labelIdx = Int(labels[i])
    let label = labelText[labelIdx]
    let confidence = probabilities[i]

    if confidence > 0.66 {
        print("Object found: \(label) (confidence: \(confidence))")
        print("  Top-left: (\(left),\(top))")
        print("  Bottom-right: (\(right),\(bottom))")
    }
}

Objective-C

NSString *labelPath = [NSBundle.mainBundle pathForResource:@"dict"
                                                    ofType:@"txt"];
NSString *fileContents = [NSString stringWithContentsOfFile:labelPath
                                                   encoding:NSUTF8StringEncoding
                                                      error:&error];
if (error != nil || fileContents == NULL) { return; }
NSArray<NSString*> *labelText = [fileContents componentsSeparatedByString:@"\n"];

for (int i = 0; i < 40; i++) {
    Float32 top, right, bottom, left;
    Float32 labelIdx;
    Float32 confidence;

    [boundingBoxes getBytes:&top range:NSMakeRange(16 * i + 0, 4)];
    [boundingBoxes getBytes:&left range:NSMakeRange(16 * i + 4, 4)];
    [boundingBoxes getBytes:&bottom range:NSMakeRange(16 * i + 8, 4)];
    [boundingBoxes getBytes:&right range:NSMakeRange(16 * i + 12, 4)];

    [labels getBytes:&labelIdx range:NSMakeRange(4 * i, 4)];
    [probabilities getBytes:&confidence range:NSMakeRange(4 * i, 4)];

    if (confidence > 0.5f) {
        NSString *label = labelText[(int)labelIdx];
        NSLog(@"Object detected: %@", label);
        NSLog(@"  Confidence: %f", confidence);
        NSLog(@"  Top-left: (%f,%f)", left, top);
        NSLog(@"  Bottom-right: (%f,%f)", right, bottom);
    }
}

Suggerimenti per migliorare il rendimento in tempo reale

Se vuoi etichettare le immagini in un'applicazione in tempo reale, segui queste linee guida per ottenere i migliori framerate:

  • Limita le chiamate al rilevatore. Se un nuovo frame video diventa disponibile durante l'esecuzione del rilevatore, rilascia il frame.
  • Se utilizzi l'output del rilevatore per sovrapporre elementi grafici all'immagine di input, ottieni prima il risultato, quindi esegui il rendering dell'immagine e la sovrapposizione in un unico passaggio. In questo modo, il rendering sulla superficie di visualizzazione viene eseguito una sola volta per ogni frame di input. Per un esempio, consulta le classi previewOverlayView e FIRDetectionOverlayView nell'app di esempio showcase.