Nachdem Sie Ihr eigenes Modell mit AutoML Vision Edge trainiert haben, können Sie es in Ihrer App zum Labeln von Bildern verwenden.
Es gibt zwei Möglichkeiten, mit AutoML Vision Edge trainierte Modelle einzubinden: Sie können das Modell bündeln, indem Sie es in den Asset-Ordner Ihrer App einfügen, oder Sie können es dynamisch von Firebase herunterladen.
Optionen für die Kombination von Modellen | |
---|---|
In Ihrer App gebündelt |
|
Mit Firebase gehostet |
|
Hinweis
Fügen Sie die Abhängigkeiten für die ML Kit Android-Bibliotheken der Gradle-Datei auf App-Ebene Ihres Moduls hinzu. Diese befindet sich in der Regel unter
app/build.gradle
:So binden Sie ein Modell in Ihre App ein:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-custom:16.3.1' }
Wenn Sie ein Modell dynamisch aus Firebase herunterladen möchten, fügen Sie die
linkFirebase
-Abhängigkeit hinzu:dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-custom:16.3.1' implementation 'com.google.mlkit:linkfirebase:16.1.0' }
Wenn Sie ein Modell herunterladen möchten, müssen Sie Firebase Ihrem Android-Projekt hinzufügen, falls noch nicht geschehen. Dies ist nicht erforderlich, wenn Sie das Modell bündeln.
1. Modell laden
Lokale Modellquelle konfigurieren
So bündeln Sie das Modell mit Ihrer App:
Extrahieren Sie das Modell und seine Metadaten aus dem ZIP-Archiv, das Sie aus der Firebase-Konsole heruntergeladen haben. Wir empfehlen, die Dateien unverändert (einschließlich der Dateinamen) zu verwenden.
Fügen Sie Ihr Modell und die zugehörigen Metadatendateien in Ihr App-Paket ein:
- Wenn Ihr Projekt keinen Assets-Ordner enthält, erstellen Sie einen. Klicken Sie dazu mit der rechten Maustaste auf den Ordner
app/
und dann auf Neu > Ordner > Assets-Ordner. - Erstellen Sie einen Unterordner im Ordner „assets“, der die Modelldateien enthält.
- Kopieren Sie die Dateien
model.tflite
,dict.txt
undmanifest.json
in den Unterordner (alle drei Dateien müssen sich im selben Ordner befinden).
- Wenn Ihr Projekt keinen Assets-Ordner enthält, erstellen Sie einen. Klicken Sie dazu mit der rechten Maustaste auf den Ordner
Fügen Sie der Datei
build.gradle
Ihrer App Folgendes hinzu, damit Gradle die Modelldatei beim Erstellen der App nicht komprimiert:android { // ... aaptOptions { noCompress "tflite" } }
Die Modelldatei wird in das App-Paket aufgenommen und ist für ML Kit als Roh-Asset verfügbar.
Erstellen Sie das
LocalModel
-Objekt und geben Sie den Pfad zur Modellmanifestdatei an:Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
Kotlin
val localModel = LocalModel.Builder() .setAssetManifestFilePath("manifest.json") // or .setAbsoluteManifestFilePath(absolute file path to manifest file) .build()
Von Firebase gehostete Modellquelle konfigurieren
Wenn Sie das remote gehostete Modell verwenden möchten, erstellen Sie ein CustomRemoteModel
-Objekt und geben Sie den Namen an, den Sie dem Modell beim Veröffentlichen zugewiesen haben:
Java
// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
new CustomRemoteModel.Builder(firebaseModelSource).build();
Kotlin
// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
.build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()
Starten Sie dann den Modell-Download und geben Sie die Bedingungen an, unter denen Sie das Herunterladen zulassen möchten. Wenn das Modell nicht auf dem Gerät vorhanden ist oder eine neuere Version des Modells verfügbar ist, wird das Modell asynchron von Firebase heruntergeladen:
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
Viele Apps starten den Downloadvorgang in ihrem Initialisierungscode, aber Sie können dies jederzeit tun, bevor Sie das Modell verwenden müssen.
Image-Labeler aus Ihrem Modell erstellen
Nachdem Sie Ihre Modellquellen konfiguriert haben, erstellen Sie ein ImageLabeler
-Objekt aus einer der Quellen.
Wenn Sie nur ein lokal gebündeltes Modell haben, erstellen Sie einfach einen Labeler aus Ihrem CustomImageLabelerOptions
-Objekt und konfigurieren Sie den erforderlichen Konfidenzwertschwellenwert (siehe Modell bewerten):
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)
Wenn Sie ein remote gehostetes Modell haben, müssen Sie prüfen, ob es heruntergeladen wurde, bevor Sie es ausführen. Sie können den Status des Modelldownloads mit der Methode isModelDownloaded()
des Modellmanagers prüfen.
Sie müssen dies zwar nur vor dem Ausführen des Labelers bestätigen, aber wenn Sie sowohl ein remote gehostetes als auch ein lokal gebündeltes Modell haben, kann es sinnvoll sein, diese Prüfung beim Instanziieren des Bildlabelers durchzuführen: Erstellen Sie einen Labeler aus dem Remotemodell, wenn es heruntergeladen wurde, und andernfalls aus dem lokalen Modell.
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
CustomImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
}
CustomImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate threshold.
.build();
ImageLabeler labeler = ImageLabeling.getClient(options);
}
});
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
CustomImageLabelerOptions.Builder(remoteModel)
} else {
CustomImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Cloud console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = ImageLabeling.getClient(options)
}
Wenn Sie nur ein Remote-Modell haben, sollten Sie modellbezogene Funktionen deaktivieren, z. B. einen Teil der Benutzeroberfläche ausblenden oder ausgrauen, bis Sie bestätigen, dass das Modell heruntergeladen wurde. Dazu können Sie einen Listener an die download()
-Methode des Modellmanagers anhängen:
Java
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Eingabebild vorbereiten
Erstellen Sie dann für jedes Bild, das Sie labeln möchten, ein InputImage
-Objekt aus dem Bild. Die Bildkennzeichnung funktioniert am schnellsten, wenn Sie ein Bitmap
verwenden. Wenn Sie die Camera2 API verwenden, wird ein YUV_420_888-media.Image
empfohlen, sofern möglich.
Sie können ein InputImage
aus verschiedenen Quellen erstellen. Diese werden unten erläutert.
Mit einem media.Image
Wenn Sie ein InputImage
-Objekt aus einem media.Image
-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image
-Objekt und die Drehung des Bildes an InputImage.fromMediaImage()
.
Wenn Sie die
CameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener
und ImageAnalysis.Analyzer
den Rotationswert für Sie.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy?) { val mediaImage = imageProxy?.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees); // Pass image to an ML Kit Vision API // ... } }
Wenn Sie keine Kamerabibliothek verwenden, die den Drehwinkel des Bildes angibt, können Sie ihn aus dem Drehwinkel des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Übergeben Sie dann das media.Image
-Objekt und den Wert für den Drehwinkel an InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Datei-URI verwenden
Wenn Sie ein InputImage
-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an InputImage.fromFilePath()
. Das ist nützlich, wenn Sie mit einem ACTION_GET_CONTENT
-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
oder ByteArray
verwenden
Wenn Sie ein InputImage
-Objekt aus einem ByteBuffer
oder einem ByteArray
erstellen möchten, berechnen Sie zuerst den Bilddrehwinkel wie zuvor für die media.Image
-Eingabe beschrieben.
Erstellen Sie dann das InputImage
-Objekt mit dem Puffer oder Array sowie der Höhe, Breite, dem Farbcodierungsformat und dem Rotationsgrad des Bildes:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Mit einem Bitmap
So erstellen Sie ein InputImage
-Objekt aus einem Bitmap
-Objekt:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Das Bild wird durch ein Bitmap
-Objekt zusammen mit den Rotationsgraden dargestellt.
3. Bildlabeler ausführen
Wenn Sie Objekte in einem Bild mit Labels versehen möchten, übergeben Sie das image
-Objekt an die process()
-Methode von ImageLabeler
.
Java
labeler.process(image)
.addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
@Override
public void onSuccess(List<ImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin
labeler.process(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
4. Informationen zu gekennzeichneten Objekten abrufen
Wenn die Bildkennzeichnung erfolgreich ist, wird eine Liste von ImageLabel
-Objekten an den Erfolgs-Listener übergeben. Jedes ImageLabel
-Objekt stellt etwas dar, das im Bild gekennzeichnet wurde. Sie können die Textbeschreibung jedes Labels, den Konfidenzwert der Übereinstimmung und den Index der Übereinstimmung abrufen.
Beispiel:
Java
for (ImageLabel label : labels) {
String text = label.getText();
float confidence = label.getConfidence();
int index = label.getIndex();
}
Kotlin
for (label in labels) {
val text = label.text
val confidence = label.confidence
val index = label.index
}
Tipps zur Verbesserung der Echtzeitleistung
Wenn Sie Bilder in einer Echtzeitanwendung labeln möchten, sollten Sie die folgenden Richtlinien beachten, um die besten Framerates zu erzielen:
- Drosseln Sie die Aufrufe des Bildkennzeichners. Wenn ein neuer Videoframes verfügbar wird, während das Bildlabeling-Tool ausgeführt wird, verwerfen Sie den Frame. Ein Beispiel finden Sie in der Klasse
VisionProcessorBase
in der Beispiel-App für die Kurzanleitung. - Wenn Sie die Ausgabe des Bildkennzeichners verwenden, um Grafiken auf das Eingabebild zu legen, rufen Sie zuerst das Ergebnis ab und rendern Sie dann das Bild und das Overlay in einem einzigen Schritt. Dadurch wird für jeden Eingabe-Frame nur einmal auf die Displayoberfläche gerendert. Ein Beispiel finden Sie in der
CameraSourcePreview
- undGraphicOverlay
-Klasse in der Beispiel-App für die Kurzanleitung. -
Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder im
ImageFormat.YUV_420_888
-Format auf.Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder im
ImageFormat.NV21
-Format auf.