Puoi utilizzare Firebase ML per riconoscere il testo nelle immagini. Firebase ML ha un'API generica adatta al riconoscimento del testo nelle immagini, ad esempio il testo di un cartello stradale, e un'API ottimizzata per il riconoscimento del testo dei documenti.
Prima di iniziare
- Se non l'hai ancora fatto, aggiungi Firebase al tuo progetto Android.
-
Nel file Gradle (a livello di app) del modulo
(di solito
<project>/<app-module>/build.gradle.kts
o<project>/<app-module>/build.gradle
), aggiungi la dipendenza per la libreria Firebase ML Vision per Android. Ti consigliamo di utilizzare Firebase Android BoM per controllare il controllo delle versioni della libreria.dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:34.0.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
Utilizzando la Firebase Android BoM, la tua app utilizzerà sempre versioni compatibili delle librerie Firebase Android.
(Alternativa) Aggiungi le dipendenze della libreria Firebase senza utilizzare BoM
Se scegli di non utilizzare la Firebase BoM, devi specificare ogni versione della libreria Firebase nella riga della dipendenza.
Tieni presente che se utilizzi più librerie Firebase nella tua app, ti consigliamo vivamente di utilizzare la BoM per gestire le versioni delle librerie, in modo da garantire la compatibilità di tutte le versioni.
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
-
Se non hai ancora abilitato le API basate sul cloud per il tuo progetto, fallo ora:
- Apri la pagina Firebase ML API nella console Firebase.
-
Se non hai ancora eseguito l'upgrade del progetto al piano tariffario Blaze con pagamento a consumo, fai clic su Esegui upgrade. (Ti verrà chiesto di eseguire l'upgrade solo se il tuo progetto non è incluso nel piano tariffario Blaze.)
Solo i progetti con il piano tariffario Blaze possono utilizzare le API basate sul cloud.
- Se le API basate sul cloud non sono già abilitate, fai clic su Abilita API basate sul cloud.
Ora puoi iniziare a riconoscere il testo nelle immagini.
Linee guida per le immagini di input
-
Affinché Firebase ML riconosca con precisione il testo, le immagini di input devono contenere testo rappresentato da dati di pixel sufficienti. Idealmente, per il testo latino, ogni carattere dovrebbe essere di almeno 16 x 16 pixel. Per il testo in cinese, giapponese e coreano, ogni carattere deve essere di 24 x 24 pixel. Per tutte le lingue, in genere non è necessario che i caratteri siano più grandi di 24 x 24 pixel per una maggiore precisione.
Ad esempio, un'immagine 640 x 480 potrebbe essere adatta per scansionare un biglietto da visita che occupa l'intera larghezza dell'immagine. Per scansionare un documento stampato su carta in formato lettera, potrebbe essere necessaria un'immagine di 720 x 1280 pixel.
-
Una messa a fuoco scadente dell'immagine può compromettere l'accuratezza del riconoscimento del testo. Se non ottieni risultati accettabili, chiedi all'utente di acquisire nuovamente l'immagine.
Riconosce il testo nelle immagini
Per riconoscere il testo in un'immagine, esegui il riconoscimento del testo come descritto di seguito.
1. Eseguire il riconoscimento del testo
Per riconoscere il testo in un'immagine, crea un oggettoFirebaseVisionImage
da un Bitmap
, media.Image
, ByteBuffer
, array di byte o un file sul
dispositivo. Quindi, passa l'oggetto FirebaseVisionImage
al metodo processImage
di FirebaseVisionTextRecognizer
.
Crea un oggetto
FirebaseVisionImage
dalla tua immagine.-
Per creare un oggetto
FirebaseVisionImage
da un oggettomedia.Image
, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggettomedia.Image
e la rotazione dell'immagine aFirebaseVisionImage.fromMediaImage()
.Se utilizzi la libreria CameraX, le classi
OnImageCapturedListener
eImageAnalysis.Analyzer
calcolano il valore di rotazione per te, quindi devi solo convertire la rotazione in una delle costantiROTATION_
di Firebase ML prima di chiamareFirebaseVisionImage.fromMediaImage()
:Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
Se non utilizzi una libreria di fotocamere che ti fornisce la rotazione dell'immagine, puoi calcolarla dalla rotazione del dispositivo e dall'orientamento del sensore della fotocamera nel dispositivo:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Poi, passa l'oggetto
media.Image
e il valore di rotazione aFirebaseVisionImage.fromMediaImage()
:Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- Per creare un oggetto
FirebaseVisionImage
da un URI file, passa il contesto dell'app e l'URI file aFirebaseVisionImage.fromFilePath()
. Questa funzionalità è utile quando utilizzi un intentACTION_GET_CONTENT
per chiedere all'utente di selezionare un'immagine dalla sua app galleria.Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- Per creare un oggetto
FirebaseVisionImage
da unByteBuffer
o da un array di byte, calcola prima la rotazione dell'immagine come descritto sopra per l'inputmedia.Image
.Poi, crea un oggetto
FirebaseVisionImageMetadata
che contenga altezza, larghezza, formato di codifica del colore e rotazione dell'immagine:Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Utilizza il buffer o l'array e l'oggetto metadati per creare un oggetto
FirebaseVisionImage
:Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- Per creare un oggetto
FirebaseVisionImage
da un oggettoBitmap
:Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
deve essere verticale, senza necessità di rotazione aggiuntiva.
-
Recupera un'istanza di
FirebaseVisionTextRecognizer
.Kotlin
val detector = FirebaseVision.getInstance().cloudTextRecognizer // Or, to change the default settings: // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build()
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getCloudTextRecognizer(); // Or, to change the default settings: // FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() // .getCloudTextRecognizer(options);
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build();
Infine, passa l'immagine al metodo
processImage
:Kotlin
val result = detector.processImage(image) .addOnSuccessListener { firebaseVisionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<FirebaseVisionText> result = detector.processImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText firebaseVisionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
2. Estrarre testo da blocchi di testo riconosciuto
Se l'operazione di riconoscimento del testo ha esito positivo, un oggettoFirebaseVisionText
verrà passato al listener di successo. Un oggetto FirebaseVisionText
contiene il testo completo riconosciuto nell'immagine e zero o più oggetti TextBlock
.
Ogni TextBlock
rappresenta un blocco di testo rettangolare, che contiene zero o
più oggetti Line
. Ogni oggetto Line
contiene zero o più oggetti
Element
, che rappresentano parole ed entità simili a parole (date, numeri e così via).
Per ogni oggetto TextBlock
, Line
e Element
, puoi ottenere il testo
riconosciuto nella regione e le coordinate del rettangolo di selezione della regione.
Ad esempio:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockConfidence = block.confidence val blockLanguages = block.recognizedLanguages val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineConfidence = line.confidence val lineLanguages = line.recognizedLanguages val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementConfidence = element.confidence val elementLanguages = element.recognizedLanguages val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionText.Line line: block.getLines()) { String lineText = line.getText(); Float lineConfidence = line.getConfidence(); List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (FirebaseVisionText.Element element: line.getElements()) { String elementText = element.getText(); Float elementConfidence = element.getConfidence(); List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); } } }
Passaggi successivi
- Prima di eseguire il deployment in produzione di un'app che utilizza un'API Cloud, devi adottare alcune misure aggiuntive per prevenire e mitigare l'effetto dell'accesso non autorizzato all'API.
Riconoscere il testo nelle immagini dei documenti
Per riconoscere il testo di un documento, configura ed esegui lo strumento di riconoscimento del testo del documento come descritto di seguito.
L'API di riconoscimento del testo del documento, descritta di seguito, fornisce un'interfaccia
pensata per semplificare l'utilizzo delle immagini dei documenti. Tuttavia,
se preferisci l'interfaccia fornita dall'API FirebaseVisionTextRecognizer
,
puoi utilizzarla per scansionare i documenti configurando il riconoscitore di testo cloud
in modo che utilizzi il modello di testo denso.
Per utilizzare l'API di riconoscimento del testo del documento:
1. Eseguire il riconoscimento del testo
Per riconoscere il testo in un'immagine, crea un oggettoFirebaseVisionImage
da un Bitmap
, media.Image
, ByteBuffer
, array di byte o file sul dispositivo.
Quindi, passa l'oggetto FirebaseVisionImage
al metodo processImage
di FirebaseVisionDocumentTextRecognizer
.
Crea un oggetto
FirebaseVisionImage
dalla tua immagine.-
Per creare un oggetto
FirebaseVisionImage
da un oggettomedia.Image
, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggettomedia.Image
e la rotazione dell'immagine aFirebaseVisionImage.fromMediaImage()
.Se utilizzi la libreria CameraX, le classi
OnImageCapturedListener
eImageAnalysis.Analyzer
calcolano il valore di rotazione per te, quindi devi solo convertire la rotazione in una delle costantiROTATION_
di Firebase ML prima di chiamareFirebaseVisionImage.fromMediaImage()
:Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
Se non utilizzi una libreria di fotocamere che ti fornisce la rotazione dell'immagine, puoi calcolarla dalla rotazione del dispositivo e dall'orientamento del sensore della fotocamera nel dispositivo:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Poi, passa l'oggetto
media.Image
e il valore di rotazione aFirebaseVisionImage.fromMediaImage()
:Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- Per creare un oggetto
FirebaseVisionImage
da un URI file, passa il contesto dell'app e l'URI file aFirebaseVisionImage.fromFilePath()
. Questa funzionalità è utile quando utilizzi un intentACTION_GET_CONTENT
per chiedere all'utente di selezionare un'immagine dalla sua app galleria.Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- Per creare un oggetto
FirebaseVisionImage
da unByteBuffer
o da un array di byte, calcola prima la rotazione dell'immagine come descritto sopra per l'inputmedia.Image
.Poi, crea un oggetto
FirebaseVisionImageMetadata
che contenga altezza, larghezza, formato di codifica del colore e rotazione dell'immagine:Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Utilizza il buffer o l'array e l'oggetto metadati per creare un oggetto
FirebaseVisionImage
:Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- Per creare un oggetto
FirebaseVisionImage
da un oggettoBitmap
:Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
deve essere verticale, senza necessità di rotazione aggiuntiva.
-
Recupera un'istanza di
FirebaseVisionDocumentTextRecognizer
:Kotlin
val detector = FirebaseVision.getInstance() .cloudDocumentTextRecognizer
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build() val detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options)
Java
FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer();
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudDocumentRecognizerOptions options = new FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build(); FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options);
Infine, passa l'immagine al metodo
processImage
:Kotlin
detector.processImage(myImage) .addOnSuccessListener { firebaseVisionDocumentText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
detector.processImage(myImage) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() { @Override public void onSuccess(FirebaseVisionDocumentText result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
2. Estrarre testo da blocchi di testo riconosciuto
Se l'operazione di riconoscimento del testo va a buon fine, viene restituito un oggetto
FirebaseVisionDocumentText
. Un oggetto FirebaseVisionDocumentText
contiene il testo completo riconosciuto nell'immagine e una gerarchia di oggetti che riflettono la struttura del documento riconosciuto:
FirebaseVisionDocumentText.Block
FirebaseVisionDocumentText.Paragraph
FirebaseVisionDocumentText.Word
FirebaseVisionDocumentText.Symbol
Per ogni oggetto Block
, Paragraph
, Word
e Symbol
, puoi ottenere il testo riconosciuto nella regione e le coordinate del riquadro di selezione della regione.
Ad esempio:
Kotlin
val resultText = result.text for (block in result.blocks) { val blockText = block.text val blockConfidence = block.confidence val blockRecognizedLanguages = block.recognizedLanguages val blockFrame = block.boundingBox for (paragraph in block.paragraphs) { val paragraphText = paragraph.text val paragraphConfidence = paragraph.confidence val paragraphRecognizedLanguages = paragraph.recognizedLanguages val paragraphFrame = paragraph.boundingBox for (word in paragraph.words) { val wordText = word.text val wordConfidence = word.confidence val wordRecognizedLanguages = word.recognizedLanguages val wordFrame = word.boundingBox for (symbol in word.symbols) { val symbolText = symbol.text val symbolConfidence = symbol.confidence val symbolRecognizedLanguages = symbol.recognizedLanguages val symbolFrame = symbol.boundingBox } } } }
Java
String resultText = result.getText(); for (FirebaseVisionDocumentText.Block block: result.getBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) { String paragraphText = paragraph.getText(); Float paragraphConfidence = paragraph.getConfidence(); List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages(); Rect paragraphFrame = paragraph.getBoundingBox(); for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) { String wordText = word.getText(); Float wordConfidence = word.getConfidence(); List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages(); Rect wordFrame = word.getBoundingBox(); for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) { String symbolText = symbol.getText(); Float symbolConfidence = symbol.getConfidence(); List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Passaggi successivi
- Prima di eseguire il deployment in produzione di un'app che utilizza un'API Cloud, devi adottare alcune misure aggiuntive per prevenire e mitigare l'effetto dell'accesso non autorizzato all'API.