הוספת תוויות לתמונות באמצעות Firebase ML ב-Android

אתם יכולים להשתמש ב-Firebase ML כדי להוסיף תוויות לאובייקטים שזוהו בתמונה. מידע על התכונות של ה-API הזה מופיע בסקירה הכללית.

לפני שמתחילים

  1. אם עדיין לא עשיתם זאת, מוסיפים את Firebase לפרויקט Android.
  2. בקובץ Gradle של המודול (ברמת האפליקציה) (בדרך כלל <project>/<app-module>/build.gradle.kts או <project>/<app-module>/build.gradle), מוסיפים את התלות של ספריית Vision ל-Android.Firebase ML מומלץ להשתמש ב-Firebase Android BoM כדי לשלוט בניהול הגרסאות של הספריות.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:34.0.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    באמצעות Firebase Android BoM, האפליקציה תמיד תשתמש בגרסאות תואמות של ספריות Firebase ל-Android.

    (חלופה)  מוסיפים תלויות של ספריות Firebase בלי להשתמש ב-BoM

    אם לא משתמשים ב-Firebase BoM, צריך לציין את הגרסה של כל ספריית Firebase בשורת התלות שלה.

    הערה: אם אתם משתמשים בכמה ספריות Firebase באפליקציה, מומלץ מאוד להשתמש ב-BoM כדי לנהל את גרסאות הספריות, וכך לוודא שכל הגרסאות תואמות.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
  3. אם עדיין לא הפעלתם ממשקי API מבוססי-Cloud בפרויקט, עכשיו הזמן לעשות זאת:

    1. פותחים את Firebase ML הדף APIs במסוף Firebase.
    2. אם עדיין לא שדרגתם את הפרויקט לתוכנית התמחור Blaze עם תשלום לפי שימוש, לוחצים על שדרוג כדי לעשות זאת. (ההודעה לשדרוג תוצג רק אם הפרויקט לא נמצא בתוכנית התמחור Blaze).

      רק בפרויקטים שמוגדרת בהם תוכנית התמחור Blaze אפשר להשתמש בממשקי API מבוססי-Cloud.

    3. אם ממשקי API מבוססי-ענן לא מופעלים כבר, לוחצים על הפעלת ממשקי API מבוססי-ענן.

עכשיו אפשר לתייג תמונות.

1. הכנת תמונת הקלט

יוצרים אובייקט FirebaseVisionImage מהתמונה. הכלי לתווית תמונות פועל הכי מהר כשמשתמשים ב-Bitmap או, אם משתמשים ב-camera2 API, ב-media.Image בפורמט JPEG. מומלץ להשתמש בפורמטים האלה כשזה אפשרי.

  • כדי ליצור אובייקט FirebaseVisionImage מאובייקט media.Image, למשל כשמצלמים תמונה ממצלמת המכשיר, מעבירים את אובייקט media.Image ואת סיבוב התמונה אל FirebaseVisionImage.fromMediaImage().

    אם אתם משתמשים בספריית CameraX, המחלקות OnImageCapturedListener ו-ImageAnalysis.Analyzer מחשבות את ערך הסיבוב בשבילכם, כך שאתם רק צריכים להמיר את הסיבוב לאחד מהקבועים של Firebase ML ROTATION_ לפני שאתם קוראים ל-FirebaseVisionImage.fromMediaImage():

    Kotlin

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Vision API
                // ...
            }
        }
    }

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Vision API
            // ...
        }
    }

    אם לא משתמשים בספריית מצלמה שמספקת את סיבוב התמונה, אפשר לחשב את הסיבוב מסיבוב המכשיר ומכיוון חיישן המצלמה במכשיר:

    Kotlin

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    לאחר מכן מעבירים את האובייקט media.Image ואת ערך הסיבוב אל FirebaseVisionImage.fromMediaImage():

    Kotlin

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
  • כדי ליצור אובייקט FirebaseVisionImage מ-URI של קובץ, מעבירים את הקשר של האפליקציה ואת ה-URI של הקובץ אל FirebaseVisionImage.fromFilePath(). האפשרות הזו שימושית כשמשתמשים ב-ACTION_GET_CONTENT intent כדי להנחות את המשתמש לבחור תמונה מאפליקציית הגלריה שלו.

    Kotlin

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }
  • כדי ליצור אובייקט FirebaseVisionImage מ-ByteBuffer או ממערך בייטים, קודם מחשבים את סיבוב התמונה כמו שמתואר למעלה לגבי קלט media.Image.

    לאחר מכן, יוצרים FirebaseVisionImageMetadataאובייקט שמכיל את הגובה, הרוחב, פורמט קידוד הצבע והסיבוב של התמונה:

    Kotlin

    val metadata = FirebaseVisionImageMetadata.Builder()
        .setWidth(480) // 480x360 is typically sufficient for
        .setHeight(360) // image recognition
        .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
        .setRotation(rotation)
        .build()

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    משתמשים במאגר או במערך ובאובייקט המטא-נתונים כדי ליצור אובייקט FirebaseVisionImage:

    Kotlin

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
  • כדי ליצור אובייקט FirebaseVisionImage מאובייקט Bitmap:

    Kotlin

    val image = FirebaseVisionImage.fromBitmap(bitmap)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
    התמונה שמיוצגת על ידי אובייקט Bitmap צריכה להיות זקופה, בלי שיהיה צורך בסיבוב נוסף.

2. הגדרה והרצה של הכלי לתוויות תמונות

כדי להוסיף תוויות לאובייקטים בתמונה, מעבירים את האובייקט FirebaseVisionImage לשיטה processImage של FirebaseVisionImageLabeler.

  1. קודם כל, צריך ליצור מופע של FirebaseVisionImageLabeler.

    Kotlin

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

  2. לאחר מכן, מעבירים את התמונה לשיטה processImage():

    Kotlin

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

3. קבלת מידע על אובייקטים עם תוויות

אם פעולת התיוג של התמונה תצליח, רשימה של אובייקטים מסוג FirebaseVisionImageLabel תועבר אל מאזין ההצלחה. כל אובייקט FirebaseVisionImageLabel מייצג משהו שסומן בתמונה. לכל תווית אפשר לקבל את תיאור הטקסט של התווית, את מזהה הישות בגרף הידע (אם זמין) ואת ציון רמת הביטחון של ההתאמה. לדוגמה:

Kotlin

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

השלבים הבאים