Vector Functions
| Name | Description |
COSINE_DISTANCE
|
Returns the cosine distance between two vectors |
DOT_PRODUCT
|
Returns the dot product between two vectors |
EUCLIDEAN_DISTANCE
|
Returns the euclidean distance between two vectors |
MANHATTAN_DISTANCE
|
Returns the manhattan distance between two vectors |
VECTOR_LENGTH
|
Returns the number of elements in a vector |
COSINE_DISTANCE
Syntax:
cosine_distance(x: VECTOR, y: VECTOR) -> FLOAT64
Description:
Returns the cosine distance between x and y.
Node.js
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).as("cosineDistance") ) .execute();
Web
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await execute(db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).as("cosineDistance")));
Swift
let sampleVector = [0.0, 1, 2, 3, 4, 5] let result = try await db.pipeline() .collection("books") .select([ Field("embedding").cosineDistance(sampleVector).as("cosineDistance") ]) .execute()
Kotlin
val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) val result = db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).alias("cosineDistance") ) .execute()
Java
double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").cosineDistance(sampleVector).alias("cosineDistance") ) .execute();
Python
from google.cloud.firestore_v1.pipeline_expressions import Field from google.cloud.firestore_v1.vector import Vector sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) result = ( client.pipeline() .collection("books") .select( Field.of("embedding").cosine_distance(sample_vector).as_("cosineDistance") ) .execute() )
Java
double[] sampleVector = new double[] {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Pipeline.Snapshot result = firestore .pipeline() .collection("books") .select(cosineDistance(field("embedding"), sampleVector).as("cosineDistance")) .execute() .get();
DOT_PRODUCT
Syntax:
dot_product(x: VECTOR, y: VECTOR) -> FLOAT64
Description:
Returns the dot product of x and y.
Node.js
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).as("dotProduct") ) .execute();
Web
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await execute(db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).as("dotProduct") ) );
Swift
let sampleVector = [0.0, 1, 2, 3, 4, 5] let result = try await db.pipeline() .collection("books") .select([ Field("embedding").dotProduct(sampleVector).as("dotProduct") ]) .execute()
Kotlin
val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) val result = db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).alias("dotProduct") ) .execute()
Java
double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").dotProduct(sampleVector).alias("dotProduct") ) .execute();
Python
from google.cloud.firestore_v1.pipeline_expressions import Field from google.cloud.firestore_v1.vector import Vector sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) result = ( client.pipeline() .collection("books") .select(Field.of("embedding").dot_product(sample_vector).as_("dotProduct")) .execute() )
Java
double[] sampleVector = new double[] {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Pipeline.Snapshot result = firestore .pipeline() .collection("books") .select(dotProduct(field("embedding"), sampleVector).as("dotProduct")) .execute() .get();
EUCLIDEAN_DISTANCE
Syntax:
euclidean_distance(x: VECTOR, y: VECTOR) -> FLOAT64
Description:
Computes the euclidean distance between x and y.
Node.js
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).as("euclideanDistance") ) .execute();
Web
const sampleVector = [0.0, 1, 2, 3, 4, 5]; const result = await execute(db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).as("euclideanDistance") ) );
Swift
let sampleVector = [0.0, 1, 2, 3, 4, 5] let result = try await db.pipeline() .collection("books") .select([ Field("embedding").euclideanDistance(sampleVector).as("euclideanDistance") ]) .execute()
Kotlin
val sampleVector = doubleArrayOf(0.0, 1.0, 2.0, 3.0, 4.0, 5.0) val result = db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).alias("euclideanDistance") ) .execute()
Java
double[] sampleVector = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").euclideanDistance(sampleVector).alias("euclideanDistance") ) .execute();
Python
from google.cloud.firestore_v1.pipeline_expressions import Field from google.cloud.firestore_v1.vector import Vector sample_vector = Vector([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) result = ( client.pipeline() .collection("books") .select( Field.of("embedding") .euclidean_distance(sample_vector) .as_("euclideanDistance") ) .execute() )
Java
double[] sampleVector = new double[] {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; Pipeline.Snapshot result = firestore .pipeline() .collection("books") .select(euclideanDistance(field("embedding"), sampleVector).as("euclideanDistance")) .execute() .get();
MANHATTAN_DISTANCE
Syntax:
manhattan_distance(x: VECTOR, y: VECTOR) -> FLOAT64
Description:
Computes the manhattan distance between x and y.
VECTOR_LENGTH
Syntax:
vector_length(vector: VECTOR) -> INT64
Description:
Returns the number of elements in a VECTOR.
Node.js
const result = await db.pipeline() .collection("books") .select( field("embedding").vectorLength().as("vectorLength") ) .execute();
Web
const result = await execute(db.pipeline() .collection("books") .select( field("embedding").vectorLength().as("vectorLength") ) );
Swift
let result = try await db.pipeline() .collection("books") .select([ Field("embedding").vectorLength().as("vectorLength") ]) .execute()
Kotlin
val result = db.pipeline() .collection("books") .select( field("embedding").vectorLength().alias("vectorLength") ) .execute()
Java
Task<Pipeline.Snapshot> result = db.pipeline() .collection("books") .select( field("embedding").vectorLength().alias("vectorLength") ) .execute();
Python
from google.cloud.firestore_v1.pipeline_expressions import Field result = ( client.pipeline() .collection("books") .select(Field.of("embedding").vector_length().as_("vectorLength")) .execute() )
Java
Pipeline.Snapshot result = firestore .pipeline() .collection("books") .select(vectorLength(field("embedding")).as("vectorLength")) .execute() .get();