Description
Returns a non-deterministic sample from the results of the previous stage.
There are two supported modes:
DOCUMENTSmode allows for sampling a set number of documents- This mode is similar to
GoogleSQL.RESERVOIRin that it outputs a sample of sizen, where any sample of sizenis equally possible.
- This mode is similar to
PERCENTmode allows for sampling a percentage of documents- This mode is similar to
GoogleSQL.BERNOULLIin that each document is independently selected with an equalpercentprobability. This results in#documents * percent / 100documents being returned on average.
- This mode is similar to
Syntax
Node.js
const sampled = await db.pipeline()
.database()
.sample(50)
.execute();
const sampled = await db.pipeline()
.database()
.sample({ percent: 0.5 })
.execute();
Behavior
Documents Mode
Documents mode retrieves a specified number of documents in a random order.
The specified number must be a non-negative INT64 value.
For example, for the following collection:
Node.js
await db.collection('cities').doc('SF').set({name: 'San Francsico', state: 'California'});
await db.collection('cities').doc('NYC').set({name: 'New York City', state: 'New York'});
await db.collection('cities').doc('CHI').set({name: 'Chicago', state: 'Illinois'});
The sample stage in document mode can be used to retrieve a non-deterministic subset of results from this collection.
Node.js
const sampled = await db.pipeline()
.collection("/cities")
.sample(1)
.execute();
In this example, only 1 document at random would be returned at random.
{name: 'New York City', state: 'New York'}
If the supplied number is greater than the total number of documents returned, all documents are returned in a random order.
Node.js
const sampled = await db.pipeline()
.collection("/cities")
.sample(5)
.execute();
This will result in the following documents:
{name: 'New York City', state: 'New York'}
{name: 'Chicago', state: 'Illinois'}
{name: 'San Francisco', state: 'California'}
Client examples
Web
let results; // Get a sample of 100 documents in a database results = await execute(db.pipeline() .database() .sample(100) ); // Randomly shuffle a list of 3 documents results = await execute(db.pipeline() .documents([ doc(db, "cities", "SF"), doc(db, "cities", "NY"), doc(db, "cities", "DC"), ]) .sample(3) );
Swift
var results: Pipeline.Snapshot // Get a sample of 100 documents in a database results = try await db.pipeline() .database() .sample(count: 100) .execute() // Randomly shuffle a list of 3 documents results = try await db.pipeline() .documents([ db.collection("cities").document("SF"), db.collection("cities").document("NY"), db.collection("cities").document("DC"), ]) .sample(count: 3) .execute()
Kotlin
var results: Task<Pipeline.Snapshot> // Get a sample of 100 documents in a database results = db.pipeline() .database() .sample(100) .execute() // Randomly shuffle a list of 3 documents results = db.pipeline() .documents( db.collection("cities").document("SF"), db.collection("cities").document("NY"), db.collection("cities").document("DC") ) .sample(3) .execute()
Java
Task<Pipeline.Snapshot> results; // Get a sample of 100 documents in a database results = db.pipeline() .database() .sample(100) .execute(); // Randomly shuffle a list of 3 documents results = db.pipeline() .documents( db.collection("cities").document("SF"), db.collection("cities").document("NY"), db.collection("cities").document("DC") ) .sample(3) .execute();
Python
# Get a sample of 100 documents in a database results = client.pipeline().database().sample(100).execute() # Randomly shuffle a list of 3 documents results = ( client.pipeline() .documents( client.collection("cities").document("SF"), client.collection("cities").document("NY"), client.collection("cities").document("DC"), ) .sample(3) .execute() )
Java
// Get a sample of 100 documents in a database Pipeline.Snapshot results1 = firestore.pipeline().database().sample(100).execute().get(); // Randomly shuffle a list of 3 documents Pipeline.Snapshot results2 = firestore .pipeline() .documents( firestore.collection("cities").document("SF"), firestore.collection("cities").document("NY"), firestore.collection("cities").document("DC")) .sample(3) .execute() .get();
Percent Mode
In percent mode, each document has a specified percent chance of being
returned. Unlike documents mode, the order here is not random and instead
preserves the pre-existing document order. This percent input must
be a double value between 0.0 and 1.0.
Since each document is independently selected, the output is
non-deterministic and on average, #documents * percent / 100 documents will
be returned.
For example, for the following collection:
Node.js
await db.collection('cities').doc('SF').set({name: 'San Francsico', state: 'California'});
await db.collection('cities').doc('NYC').set({name: 'New York City', state: 'New York'});
await db.collection('cities').doc('CHI').set({name: 'Chicago', state: 'Illinois'});
await db.collection('cities').doc('ATL').set({name: 'Atlanta', state: 'Georgia'});
The sample stage in percent mode can be used to retrieve (on average) 50% of the documents from the collection stage.
Node.js
const sampled = await db.pipeline()
.collection("/cities")
.sample({ percent: 0.5 })
.execute();
This will result in a non-deterministic sample of (on average) 50% of documents
from the cities collection. The following is one possible output.
{name: 'New York City', state: 'New York'}
{name: 'Chicago', state: 'Illinois'}
In percent mode, because each document has the same probability of being selected, it is possible for no documents or all documents to be returned.
Client examples
Web
// Get a sample of on average 50% of the documents in the database const results = await execute(db.pipeline() .database() .sample({ percentage: 0.5 }) );
Swift
// Get a sample of on average 50% of the documents in the database let results = try await db.pipeline() .database() .sample(percentage: 0.5) .execute()
Kotlin
// Get a sample of on average 50% of the documents in the database val results = db.pipeline() .database() .sample(SampleStage.withPercentage(0.5)) .execute()
Java
// Get a sample of on average 50% of the documents in the database Task<Pipeline.Snapshot> results = db.pipeline() .database() .sample(SampleStage.withPercentage(0.5)) .execute();
Python
from google.cloud.firestore_v1.pipeline_stages import SampleOptions # Get a sample of on average 50% of the documents in the database results = ( client.pipeline().database().sample(SampleOptions.percentage(0.5)).execute() )
Java
// Get a sample of on average 50% of the documents in the database Pipeline.Snapshot results = firestore.pipeline().database().sample(Sample.withPercentage(0.5)).execute().get();