AutoML Vision Edge का इस्तेमाल करके अपने मॉडल को ट्रेन करने के बाद, इमेज को लेबल करने के लिए, अपने ऐप्लिकेशन में इसका इस्तेमाल किया जा सकता है.
AutoML Vision Edge से ट्रेन किए गए मॉडल को इंटिग्रेट करने के दो तरीके हैं: मॉडल को अपने ऐप्लिकेशन के ऐसेट फ़ोल्डर में डालकर बंडल किया जा सकता है या फिर Firebase से डाइनैमिक तौर पर डाउनलोड किया जा सकता है.
मॉडल को बंडल करने के विकल्प | |
---|---|
आपके ऐप्लिकेशन में बंडल किया गया |
|
Firebase की मदद से होस्ट किया गया |
|
शुरू करने से पहले
अपने मॉड्यूल की ऐप्लिकेशन-लेवल की Gradle फ़ाइल में, ML Kit की Android लाइब्रेरी की डिपेंडेंसी जोड़ें. आम तौर पर, यह फ़ाइल
app/build.gradle
होती है:अपने ऐप्लिकेशन के साथ मॉडल को बंडल करने के लिए:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-custom:16.3.1' }
Firebase से मॉडल को डाइनैमिक तौर पर डाउनलोड करने के लिए,
linkFirebase
डिपेंडेंसी जोड़ें:dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-custom:16.3.1' implementation 'com.google.mlkit:linkfirebase:16.1.0' }
अगर आपको कोई मॉडल डाउनलोड करना है, तो पक्का करें कि आपने पहले से ऐसा न किया हो. अगर ऐसा नहीं है, तो अपने Android प्रोजेक्ट में Firebase जोड़ें. मॉडल को बंडल करने पर, ऐसा करना ज़रूरी नहीं है.
1. मॉडल लोड करना
लोकल मॉडल सोर्स कॉन्फ़िगर करना
अपने ऐप्लिकेशन के साथ मॉडल को बंडल करने के लिए:
Firebase कंसोल से डाउनलोड किए गए ज़िप संग्रह से, मॉडल और उसके मेटाडेटा को निकालें. हमारा सुझाव है कि आप फ़ाइलों को वैसे ही इस्तेमाल करें जैसे आपने उन्हें डाउनलोड किया है. इसमें फ़ाइल के नामों में भी कोई बदलाव न करें.
अपने ऐप्लिकेशन पैकेज में अपना मॉडल और उसकी मेटाडेटा फ़ाइलें शामिल करें:
- अगर आपके प्रोजेक्ट में एसेट फ़ोल्डर नहीं है, तो एक फ़ोल्डर बनाएं. इसके लिए,
app/
फ़ोल्डर पर राइट क्लिक करें. इसके बाद, नया > फ़ोल्डर > एसेट फ़ोल्डर पर क्लिक करें. - मॉडल फ़ाइलें शामिल करने के लिए, एसेट फ़ोल्डर में एक सब-फ़ोल्डर बनाएं.
- फ़ाइलों
model.tflite
,dict.txt
, औरmanifest.json
को सब-फ़ोल्डर में कॉपी करें. यह ज़रूरी है कि तीनों फ़ाइलें एक ही फ़ोल्डर में हों.
- अगर आपके प्रोजेक्ट में एसेट फ़ोल्डर नहीं है, तो एक फ़ोल्डर बनाएं. इसके लिए,
अपने ऐप्लिकेशन की
build.gradle
फ़ाइल में ये चीज़ें जोड़ें, ताकि ऐप्लिकेशन बनाते समय Gradle, मॉडल फ़ाइल को कंप्रेस न करे:android { // ... aaptOptions { noCompress "tflite" } }
मॉडल फ़ाइल को ऐप्लिकेशन पैकेज में शामिल किया जाएगा. साथ ही, यह ML Kit के लिए रॉ ऐसेट के तौर पर उपलब्ध होगी.
मॉडल मेनिफ़ेस्ट फ़ाइल का पाथ बताकर,
LocalModel
ऑब्जेक्ट बनाएं:Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
Kotlin
val localModel = LocalModel.Builder() .setAssetManifestFilePath("manifest.json") // or .setAbsoluteManifestFilePath(absolute file path to manifest file) .build()
Firebase पर होस्ट किए गए मॉडल सोर्स को कॉन्फ़िगर करना
रिमोट तौर पर होस्ट किए गए मॉडल का इस्तेमाल करने के लिए, CustomRemoteModel
ऑब्जेक्ट बनाएं. इसमें वह नाम डालें जो आपने मॉडल को पब्लिश करते समय असाइन किया था:
Java
// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
new CustomRemoteModel.Builder(firebaseModelSource).build();
Kotlin
// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
.build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()
इसके बाद, मॉडल डाउनलोड करने का टास्क शुरू करें. साथ ही, उन शर्तों के बारे में बताएं जिनके तहत आपको डाउनलोड करने की अनुमति देनी है. अगर मॉडल डिवाइस पर मौजूद नहीं है या मॉडल का नया वर्शन उपलब्ध है, तो टास्क, Firebase से मॉडल को असिंक्रोनस तरीके से डाउनलोड करेगा:
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
कई ऐप्लिकेशन, अपने शुरुआती कोड में डाउनलोड करने का टास्क शुरू करते हैं. हालांकि, मॉडल का इस्तेमाल करने से पहले, किसी भी समय ऐसा किया जा सकता है.
अपने मॉडल से इमेज लेबल करने वाला टूल बनाना
अपने मॉडल सोर्स कॉन्फ़िगर करने के बाद, उनमें से किसी एक से ImageLabeler
ऑब्जेक्ट बनाएं.
अगर आपके पास सिर्फ़ स्थानीय तौर पर बंडल किया गया मॉडल है, तो अपने CustomImageLabelerOptions
ऑब्जेक्ट से लेबलर बनाएं और भरोसे के उस स्कोर के थ्रेशोल्ड को कॉन्फ़िगर करें जिसकी आपको ज़रूरत है (अपने मॉडल का आकलन करें देखें):
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)
अगर आपके पास किसी दूसरे डिवाइस पर होस्ट किया गया मॉडल है, तो उसे चलाने से पहले आपको यह देखना होगा कि वह डाउनलोड हो गया है या नहीं. मॉडल मैनेजर के isModelDownloaded()
तरीके का इस्तेमाल करके, मॉडल डाउनलोड करने के टास्क की स्थिति देखी जा सकती है.
लेबलर को चलाने से पहले ही इसकी पुष्टि कर ली जा सकती है. हालांकि, अगर आपके पास रिमोट से होस्ट किया गया मॉडल और स्थानीय तौर पर बंडल किया गया मॉडल, दोनों मौजूद हैं, तो इमेज लेबलर को इंस्टैंशिएट करते समय यह जांच करना सही रहेगा: अगर रिमोट मॉडल डाउनलोड किया गया है, तो उससे लेबलर बनाएं. अगर नहीं, तो स्थानीय मॉडल से बनाएं.
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
CustomImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
}
CustomImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate threshold.
.build();
ImageLabeler labeler = ImageLabeling.getClient(options);
}
});
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
CustomImageLabelerOptions.Builder(remoteModel)
} else {
CustomImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Cloud console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = ImageLabeling.getClient(options)
}
अगर आपके पास सिर्फ़ रिमोटली होस्ट किया गया मॉडल है, तो आपको मॉडल से जुड़ी सुविधाओं को बंद कर देना चाहिए. उदाहरण के लिए, अपने यूज़र इंटरफ़ेस (यूआई) के कुछ हिस्से को धूसर कर दें या छिपा दें. ऐसा तब तक करें, जब तक मॉडल के डाउनलोड होने की पुष्टि न हो जाए. ऐसा करने के लिए, मॉडल मैनेजर के download()
तरीके में एक लिसनर अटैच करें:
Java
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. इनपुट इमेज तैयार करना
इसके बाद, आपको जिस इमेज को लेबल करना है उसके लिए, अपनी इमेज से InputImage
ऑब्जेक्ट बनाएं. इमेज लेबलर सबसे तेज़ी से तब काम करता है, जब Bitmap
का इस्तेमाल किया जाता है. इसके अलावा, अगर camera2 API का इस्तेमाल किया जाता है, तो YUV_420_888 media.Image
का इस्तेमाल करें. हमारा सुझाव है कि जब भी हो सके, इनका इस्तेमाल करें.
अलग-अलग सोर्स से InputImage
बनाया जा सकता है. इनके बारे में यहां बताया गया है.
media.Image
का इस्तेमाल करना
media.Image
ऑब्जेक्ट से InputImage
ऑब्जेक्ट बनाने के लिए, media.Image
ऑब्जेक्ट और इमेज के रोटेशन को InputImage.fromMediaImage()
में पास करें. जैसे, किसी डिवाइस के कैमरे से इमेज कैप्चर करने पर.
अगर
CameraX लाइब्रेरी का इस्तेमाल किया जाता है, तो OnImageCapturedListener
और ImageAnalysis.Analyzer
क्लास आपके लिए रोटेशन वैल्यू का हिसाब लगाती हैं.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy?) { val mediaImage = imageProxy?.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees); // Pass image to an ML Kit Vision API // ... } }
अगर आपने ऐसी कैमरा लाइब्रेरी का इस्तेमाल नहीं किया है जो इमेज के घूमने की डिग्री बताती है, तो डिवाइस के घूमने की डिग्री और डिवाइस में कैमरे के सेंसर के ओरिएंटेशन से इसका हिसाब लगाया जा सकता है:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
इसके बाद, media.Image
ऑब्जेक्ट और घुमाव की डिग्री की वैल्यू को InputImage.fromMediaImage()
में पास करें:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
फ़ाइल के यूआरआई का इस्तेमाल करना
फ़ाइल यूआरआई से InputImage
ऑब्जेक्ट बनाने के लिए, ऐप्लिकेशन कॉन्टेक्स्ट और फ़ाइल यूआरआई को InputImage.fromFilePath()
में पास करें. यह तब काम आता है, जब उपयोगकर्ता को अपने गैलरी ऐप्लिकेशन से कोई इमेज चुनने के लिए कहने के लिए, ACTION_GET_CONTENT
इंटेंट का इस्तेमाल किया जाता है.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
ByteBuffer
या ByteArray
का इस्तेमाल करना
ByteBuffer
या ByteArray
से InputImage
ऑब्जेक्ट बनाने के लिए, सबसे पहले इमेज के घूमने की डिग्री का हिसाब लगाएं. यह हिसाब लगाने का तरीका, media.Image
इनपुट के लिए पहले बताया गया है.
इसके बाद, बफ़र या ऐरे के साथ InputImage
ऑब्जेक्ट बनाएं. साथ ही, इमेज की
ऊंचाई, चौड़ाई, कलर कोडिंग फ़ॉर्मैट, और घुमाव की डिग्री भी डालें:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Bitmap
का इस्तेमाल करना
किसी Bitmap
ऑब्जेक्ट से InputImage
ऑब्जेक्ट बनाने के लिए, यह एलान करें:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
इमेज को घुमाने की डिग्री के साथ Bitmap
ऑब्जेक्ट से दिखाया जाता है.
3. इमेज लेबलर को चलाना
किसी इमेज में ऑब्जेक्ट लेबल करने के लिए, image
ऑब्जेक्ट को ImageLabeler
के process()
तरीके में पास करें.
Java
labeler.process(image)
.addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
@Override
public void onSuccess(List<ImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin
labeler.process(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
4. लेबल किए गए ऑब्जेक्ट के बारे में जानकारी पाना
अगर इमेज लेबल करने की प्रोसेस पूरी हो जाती है, तो ImageLabel
ऑब्जेक्ट की सूची, सफलता के बारे में बताने वाले फ़ंक्शन को भेजी जाती है. हर ImageLabel
ऑब्जेक्ट, इमेज में लेबल किए गए किसी ऑब्जेक्ट को दिखाता है. आपको हर लेबल का टेक्स्ट ब्यौरा, मैच के कॉन्फ़िडेंस स्कोर, और मैच का इंडेक्स दिख सकता है.
उदाहरण के लिए:
Java
for (ImageLabel label : labels) {
String text = label.getText();
float confidence = label.getConfidence();
int index = label.getIndex();
}
Kotlin
for (label in labels) {
val text = label.text
val confidence = label.confidence
val index = label.index
}
रीयल-टाइम परफ़ॉर्मेंस को बेहतर बनाने के लिए सलाह
अगर आपको रीयल-टाइम ऐप्लिकेशन में इमेज लेबल करनी हैं, तो सबसे अच्छा फ़्रेमरेट पाने के लिए इन दिशा-निर्देशों का पालन करें:
- इमेज लेबलर को कॉल को कम करें. अगर इमेज लेबलर की सुविधा चालू होने के दौरान, वीडियो का कोई नया फ़्रेम उपलब्ध हो जाता है, तो फ़्रेम को छोड़ दें. उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन में
VisionProcessorBase
क्लास देखें. - अगर इनपुट इमेज पर ग्राफ़िक ओवरले करने के लिए, इमेज लेबलर के आउटपुट का इस्तेमाल किया जा रहा है, तो पहले नतीजा पाएं. इसके बाद, एक ही चरण में इमेज और ओवरले को रेंडर करें. ऐसा करने पर, हर इनपुट फ़्रेम के लिए डिसप्ले प्लैटफ़ॉर्म पर सिर्फ़ एक बार रेंडर किया जाता है. उदाहरण के लिए, क्विकस्टार्ट सैंपल ऐप्लिकेशन में
CameraSourcePreview
औरGraphicOverlay
क्लास देखें. -
अगर Camera2 API का इस्तेमाल किया जा रहा है, तो इमेज को
ImageFormat.YUV_420_888
फ़ॉर्मैट में कैप्चर करें.अगर पुराने Camera API का इस्तेमाल किया जा रहा है, तो इमेज को
ImageFormat.NV21
फ़ॉर्मैट में कैप्चर करें.