Mit Firebase ML für Android Sehenswürdigkeiten erkennen

Mit Firebase ML können Sie bekannte Sehenswürdigkeiten in einem Bild erkennen.

Hinweis

  1. Fügen Sie Ihrem Android-Projekt Firebase hinzu, falls noch nicht geschehen.
  2. Fügen Sie in der Gradle-Datei Ihres Moduls (auf App-Ebene) (in der Regel <project>/<app-module>/build.gradle.kts oder <project>/<app-module>/build.gradle) die Abhängigkeit für die Firebase ML Vision-Bibliothek für Android hinzu. Wir empfehlen, die Firebase Android BoM zu verwenden, um die Versionsverwaltung der Bibliothek zu steuern.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:34.0.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    Mit der Firebase Android BoM haben Sie immer eine kompatible Version der Firebase Android-Bibliotheken in Ihrer App.

    (Alternative)  Firebase-Bibliotheksabhängigkeiten ohne Verwendung von BoM hinzufügen

    Wenn Sie die Firebase BoM nicht verwenden möchten, müssen Sie jede Firebase-Bibliotheksversion in der entsprechenden Abhängigkeitszeile angeben.

    Wenn Sie mehrere Firebase-Bibliotheken in Ihrer App verwenden, empfehlen wir dringend, die BoM zum Verwalten von Bibliotheksversionen zu verwenden, um sicherzustellen, dass alle Versionen kompatibel sind.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
  3. Wenn Sie cloudbasierte APIs für Ihr Projekt noch nicht aktiviert haben, holen Sie dies jetzt nach:

    1. Öffnen Sie in der Firebase-Konsole die Seite Firebase ML APIs.
    2. Wenn Sie Ihr Projekt noch nicht auf den Blaze-Tarif (Pay as you go) umgestellt haben, klicken Sie auf Upgraden, um dies zu tun. Sie werden nur dann zum Upgraden aufgefordert, wenn Ihr Projekt nicht im Blaze-Tarif ist.

      Nur Projekte mit dem Blaze-Tarif können cloudbasierte APIs verwenden.

    3. Wenn cloudbasierte APIs noch nicht aktiviert sind, klicken Sie auf Cloudbasierte APIs aktivieren.

Landmark-Erkennung konfigurieren

Standardmäßig verwendet der Cloud-Detektor die STABLE-Version des Modells und gibt bis zu 10 Ergebnisse zurück. Wenn Sie eine dieser Einstellungen ändern möchten, geben Sie sie mit einem FirebaseVisionCloudDetectorOptions-Objekt an.

Wenn Sie beispielsweise beide Standardeinstellungen ändern möchten, erstellen Sie ein FirebaseVisionCloudDetectorOptions-Objekt wie im folgenden Beispiel:

Kotlin

val options = FirebaseVisionCloudDetectorOptions.Builder()
    .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
    .setMaxResults(15)
    .build()

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Wenn Sie die Standardeinstellungen verwenden möchten, können Sie im nächsten Schritt FirebaseVisionCloudDetectorOptions.DEFAULT verwenden.

Landmark-Detektor ausführen

Wenn Sie Sehenswürdigkeiten in einem Bild erkennen möchten, erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap, media.Image, ByteBuffer, Byte-Array oder einer Datei auf dem Gerät. Übergeben Sie dann das FirebaseVisionImage-Objekt an die detectInImage-Methode von FirebaseVisionCloudLandmarkDetector.

  1. Erstellen Sie ein FirebaseVisionImage-Objekt aus Ihrem Bild.

    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image-Objekt und die Drehung des Bildes an FirebaseVisionImage.fromMediaImage().

      Wenn Sie die CameraX-Bibliothek verwenden, berechnen die Klassen OnImageCapturedListener und ImageAnalysis.Analyzer den Rotationswert für Sie. Sie müssen die Rotation also nur in eine der ROTATION_-Konstanten von Firebase ML konvertieren, bevor Sie FirebaseVisionImage.fromMediaImage() aufrufen:

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      Wenn Sie keine Kamerabibliothek verwenden, die die Drehung des Bildes angibt, können Sie sie aus der Drehung des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Übergeben Sie dann das media.Image-Objekt und den Rotationswert an FirebaseVisionImage.fromMediaImage():

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an FirebaseVisionImage.fromFilePath(). Das ist nützlich, wenn Sie mit einem ACTION_GET_CONTENT-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem ByteBuffer-Objekt oder einem Byte-Array erstellen möchten, berechnen Sie zuerst die Bilddrehung wie oben für die media.Image-Eingabe beschrieben.

      Erstellen Sie dann ein FirebaseVisionImageMetadata-Objekt, das die Höhe, Breite, Farbcodierungsformat und Drehung des Bildes enthält:

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Erstellen Sie mit dem Puffer oder Array und dem Metadatenobjekt ein FirebaseVisionImage-Objekt:

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • So erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap-Objekt:

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      Das Bild, das durch das Bitmap-Objekt dargestellt wird, muss aufrecht sein und darf nicht zusätzlich gedreht werden müssen.

  2. So rufen Sie eine Instanz von FirebaseVisionCloudLandmarkDetector ab:

    Kotlin

    val detector = FirebaseVision.getInstance()
        .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);
  3. Übergeben Sie das Bild schließlich an die Methode detectInImage:

    Kotlin

    val result = detector.detectInImage(image)
        .addOnSuccessListener { firebaseVisionCloudLandmarks ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

Informationen zu den erkannten Sehenswürdigkeiten abrufen

Wenn die Landmark-Erkennung erfolgreich ist, wird eine Liste von FirebaseVisionCloudLandmark-Objekten an den Success-Listener übergeben. Jedes FirebaseVisionCloudLandmark-Objekt steht für ein im Bild erkanntes Wahrzeichen. Für jede Sehenswürdigkeit können Sie die Begrenzungskoordinaten im Eingabebild, den Namen, den Breiten- und Längengrad, die Knowledge Graph-Entitäts-ID (falls verfügbar) und den Konfidenzwert der Übereinstimmung abrufen. Beispiel:

Kotlin

for (landmark in firebaseVisionCloudLandmarks) {
    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Nächste Schritte