Маркируйте изображения с помощью Firebase ML на Android

Вы можете использовать Firebase ML для маркировки объектов, распознанных на изображении. Подробнее о возможностях этого API см. в обзоре .

Прежде чем начать

  1. Если вы еще этого не сделали, добавьте Firebase в свой Android-проект .
  2. В файле Gradle вашего модуля (уровня приложения) (обычно <project>/<app-module>/build.gradle.kts или <project>/<app-module>/build.gradle ) добавьте зависимость для библиотеки Firebase ML Vision для Android. Мы рекомендуем использовать Firebase Android BoM для управления версиями библиотеки.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:34.0.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    Используя Firebase Android BoM , ваше приложение всегда будет использовать совместимые версии библиотек Firebase Android.

    (Альтернатива) Добавьте зависимости библиотеки Firebase без использования BoM

    Если вы решите не использовать Firebase BoM , вам необходимо указать каждую версию библиотеки Firebase в строке ее зависимостей.

    Обратите внимание: если вы используете в своем приложении несколько библиотек Firebase, мы настоятельно рекомендуем использовать BoM для управления версиями библиотек, что гарантирует совместимость всех версий.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
  3. Если вы еще не включили облачные API для своего проекта, сделайте это сейчас:

    1. Откройте страницу Firebase ML API в консоли Firebase .
    2. Если вы ещё не перевели свой проект на тарифный план Blaze с оплатой по мере использования , нажмите «Обновить» , чтобы сделать это. (Вам будет предложено обновиться, только если ваш проект не входит в тарифный план Blaze.)

      Облачные API могут использовать только проекты на тарифном плане Blaze.

    3. Если облачные API еще не включены, нажмите Включить облачные API .

Теперь вы готовы маркировать изображения.

1. Подготовьте входное изображение.

Создайте объект FirebaseVisionImage из вашего изображения. Быстрее всего маркировщик изображений работает при использовании Bitmap или, если используется API camera2, media.Image в формате JPEG. Рекомендуется использовать именно эти форматы, когда это возможно.

  • Чтобы создать объект FirebaseVisionImage из объекта media.Image , например, при захвате изображения с камеры устройства, передайте объект media.Image и поворот изображения в FirebaseVisionImage.fromMediaImage() .

    Если вы используете библиотеку CameraX , классы OnImageCapturedListener и ImageAnalysis.Analyzer вычисляют значение поворота автоматически, поэтому вам просто нужно преобразовать поворот в одну из констант ROTATION_ Firebase ML перед вызовом FirebaseVisionImage.fromMediaImage() :

    Kotlin

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Vision API
                // ...
            }
        }
    }

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Vision API
            // ...
        }
    }

    Если вы не используете библиотеку камеры, которая вычисляет угол поворота изображения, вы можете рассчитать его на основе угла поворота устройства и ориентации датчика камеры в устройстве:

    Kotlin

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Затем передайте объект media.Image и значение поворота в FirebaseVisionImage.fromMediaImage() :

    Kotlin

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
  • Чтобы создать объект FirebaseVisionImage из URI файла, передайте контекст приложения и URI файла в FirebaseVisionImage.fromFilePath() . Это полезно при использовании намерения ACTION_GET_CONTENT , чтобы предложить пользователю выбрать изображение из приложения-галереи.

    Kotlin

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }
  • Чтобы создать объект FirebaseVisionImage из ByteBuffer или массива байтов, сначала рассчитайте поворот изображения, как описано выше для входных данных media.Image .

    Затем создайте объект FirebaseVisionImageMetadata , содержащий высоту, ширину, формат кодировки цвета и поворот изображения:

    Kotlin

    val metadata = FirebaseVisionImageMetadata.Builder()
        .setWidth(480) // 480x360 is typically sufficient for
        .setHeight(360) // image recognition
        .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
        .setRotation(rotation)
        .build()

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Используйте буфер или массив и объект метаданных для создания объекта FirebaseVisionImage :

    Kotlin

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
  • Чтобы создать объект FirebaseVisionImage из объекта Bitmap :

    Kotlin

    val image = FirebaseVisionImage.fromBitmap(bitmap)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
    Изображение, представленное объектом Bitmap , должно быть вертикальным, без необходимости дополнительного поворота.

2. Настройте и запустите маркировщик изображений.

Чтобы маркировать объекты на изображении, передайте объект FirebaseVisionImage методу processImage объекта FirebaseVisionImageLabeler .

  1. Сначала получите экземпляр FirebaseVisionImageLabeler .

    Kotlin

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

  2. Затем передайте изображение методу processImage() :

    Kotlin

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

3. Получить информацию о маркированных объектах

Если операция маркировки изображения выполнена успешно, прослушивателю событий будет передан список объектов FirebaseVisionImageLabel . Каждый объект FirebaseVisionImageLabel представляет собой то, что было помечено на изображении. Для каждой метки можно получить текстовое описание, идентификатор её сущности в Knowledge Graph (если доступен) и степень достоверности совпадения. Например:

Kotlin

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

Следующие шаги